مروری بر اصول و کاربرد فن آوری غیرحرارتی فراصوت در فرآوری مواد غذایی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی فناوری موادغذایی، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 استادیار، گروه علوم و صنایع غذایی، واحد خوی، دانشگاه آزاد اسلامی، خوی، ایران

4 استاد فارماسیوتیکس، مرکز تحقیقات علوم کاربردی دارویی، دانشگاه علوم پزشکی تبریز، ایران

چکیده

سابقه و هدف: استفاده از فرآیندهای غیرحرارتی به‌دلیل تقاضا برای مواد غذایی با کیفیت بالا، حاوی عطر و طعم طبیعی بدون افزودنی‌های شیمیایی، افزایش یافته است. در میان فرآیندهای غیرحرارتی موادغذایی، فراصوت به تنهایی یا در ترکیب با سایر تکنولوژی‌ها از جایگاه ویژه‌ای برخورداراست. به زبان ساده می‌توان گفت فراصوت امواج صوتی بالاتر از حد شنوایی انسان (بزرگ‌تر از 16 کیلوهرتز) می‌باشد. امواج فراصوت نوعی انرژی ارتعاشی هستند که توسط مبدل‌های فراصوت، از تبدیل انرژی الکتریکی به انرژی صوتی ارتعاشی و بالعکس تولید می‌شوند. موادغذایی که با فرآیند فراصوت فرآوری می‌شوند تا حدی تحت تأثیر پدیده کاویتاسیون و افزایش انتقال جرم قرار می‌گیرند. فراصوت به‌طور کلی در صنایع غذایی دو کاربرد عمده دارد که شامل فراصوت با شدت بالا برای فرآوریمواد غذایی و فراصوت با شدت پایین برای آنالیز مواد غذایی می‌باشد و بدلیل برجای نگذاشتن آثار فیزیکی و شیمایی در موادغذایی فرآوری شده به‌عنوان تکنیک غیرمخرب شناخته می‌شود. بیشترین کاربرد این فن‌آوری در مواد غذایی مایع عمدتاً در شیر و آبمیوه‌ها است. این فن‌آوری نوظهور در پخت‌و پز، سرخ‌کردن، برش موادغذایی منجمد و نرم، امولسیون و هموژنیزاسیون، خشک‌کردن و فیلتراسیون، ترد کردن، استخراج، انجماد و کریستالیزاسیون، گاز زدایی و کف زدایی کاربرد دارد. شاید کاربرد اصلی فراصوت در صنایع لبنی در تمیزکردن، گندزدایی میکروبی، غیرفعال کردن آنزیم‌ها، هوموژنیزاسیون، استخراج پروتیین‌های زیست‌فعال و افزایش بازده تولید پنیر ‌باشد. این مقاله تاثیر فراصوت قدرت بر انواع موادغذایی را بررسی می‌کند.
یافته ها: فراصوت قدرتی که در فرآوریمواد غذایی به کار می‌رود از محدوده فرکانس پایین 20 تا 100 کیلوهرتز با شدت صدای بین 10 تا 1000 وات بر سانتی‌متر مربع استفاده می‌شود. انرژی ارتعاشی توسط مبدل‌هایی همچون پیزوالکتریک و مغناطیسی، و اثر ونتوری ایجاد می‌شود. یکی از مهم‌ترین جنبه‌های استفاده از امواج فراصوت قدرتی در فناوری مواد غذایی، نیاز به یافتن مقدار مناسب انرژی صوتی برای اعمال در سیستم مورد نظر است، که این مقدار از طرق مختلف مانند کالری‌سنجی و دزیمتری شیمایی تعیین می‌گردد. فرآیند فراصوت در ترکیب با سایر روش‌های نگه‌داری (به‌عنوان مثال گرما و فشار) برای اثربخشی بیشتر غیر‌فعال‌سازی میکروارگانیسم‌ها در صنایع فرآوری موادغذایی علی‌الخصوص نوشیدنی‌ها به‌کار می‌رود. تکنیک فراصورت در ترکیب با سایر فن‌آوری‌های نوین مانند مایکروویو، سیال فوق‌بحرانی، اکستروژن، روش استخراج سوکسله، تقطیر کلونجر، استخراج آنزیمی و فاز مایع/جامد برای بهبود استخراج مواد زیست فعال بکار می‌رود.
نتیجه‌گیری: لذا این بررسی به‌طور خلاصه نتیجه پیشرفت‌های اخیر در استفاده از فن‌آوری فراصوت در صنایع غذایی را به‌عنوان یک روش نوین در محصولات غذایی از جمله موادغذایی مایع و لبنیات بیان می‌کند. فن‌آوری فراصوت مدت‌هاست که وجود داشته است، اما کاربردهای آن که شامل غذاهای مایع می‌شوند نسبتاً جدیدتر هستند. فرکانس‌های متفاوت فراصوت سهولت فرآوری را برای کنترل کیفیت و فرآوریمواد غذایی فراهم کرده‌است. فراصوت غیر مخرب با شدت کم روش ساده‌ای برای تخمین ترکیبات غذایی (میگو، لبنیات، میوه‌ها، غلات و غیره) ارائه می‌دهد. فراصوت تهاجمی با شدت بالا خواص بیوشیمیایی را ازطریق ایجاد کاویتاسیون تغییر می‌دهد. مزایای استفاده از فراصوت برای فرآوری موادغذایی مایع واضح هستند که شامل افزایش ماندگاری موادغذایی از طریق کاهش میکروب‌ها، باکتری‌ها و کپک‌های آلوده‌کننده است. افزایش امولسیفیکاسیون و استریلیزاسیون در دماهای پائین‌تر از فرآیندهای معمولی می-تواند درعین‌حال موجب حفظ ترکیبات فعال زیستی ‌شود. فراصوت موجب خرد شدن چربی‌ها، شکستن کازئین‌ها شده و می‌توان محصولاتی با ویژگی‌های متفاوت مانند نوشیدنی پروبیوتیک لبنی، از طریق کاهش زمان فرآوری و با صرفه‌جویی اقتصادی تولید کرد. اثرات نامطلوب احتمالی مربوط به پارامترهای کلیدی کیفیت مانند رنگ، آنتوسیانین‌ها و محتوای اسیداسکوربیک اندک است و بنابراین به‌طورکلی مشکل‌ساز نیست. پارامترهای کیفیت مانند میزان کدورت ممکن است در واقع با فراصوت ملایم بهبود یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The principles and application of non-thermal ultrasound technology in food processing

نویسندگان [English]

  • Siyavash Amini 1
  • Javad Hesari 2
  • Mahnaz Manafi Dizaj Yekan 3
  • Hamed Hamishekar 4
1 PhD student, Department of Food Science and Technology, University of Tabriz, Tabriz, Iran
2 Professor, Department of Food Science and Technology, University of Tabriz, Tabriz, Iran
3 Assistant Professor, Department of Food Science and Technology, Khoy Branch, Islamic Azad University, Khoy, Iran.
4 Professor of Pharmaceutics, Drug Applied Research Center, Tabriz University of Medical Sciences
چکیده [English]

Abstract
Background and purpose: The growing demand for high-quality food with natural aromas and flavors, free from chemical additives, has led to an increased use of non-thermal food processes. Among these, ultrasound technology plays a significant role. Ultrasound involves sound waves above the human hearing range (<16 kHz) and is generated by ultrasonic transducers that convert electrical energy into vibrational sound energy. This process enhances mass transfer through cavitation. Ultrasound has two primary applications in the food industry: high-intensity ultrasound for processing and low-intensity ultrasound for analysis. As a non-destructive technique, it does not leave physical or chemical residues on processed food, making it ideal for liquid foods like milk and juices. Its applications include cooking, frying, emulsification, homogenization, drying, extraction, and more. As it does not leave physical and chemical effects on food processing with this technology, it is In the dairy industry, ultrasound is utilized for cleaning, microbial disinfection, enzyme inactivation, homogenization, extracting bioactive proteins, and improving cheese production efficiency. This article specifically examines the effects of ultrasound on liquids and beverages, focusing on milk products.
Results: Power ultrasound is a food processing method that utilizes low-frequency sound waves, typically between 20 to 100 kHz, with sound intensities ranging from 10 to 1000 watts per square centimeter. This is achieved through transducers such as piezoelectric, magnetic, and venturi effects, which generate vibrational energy. A key consideration when applying power ultrasound in food technology is determining the appropriate amount of sound energy for the system, which can be assessed using methods like calorimetry and chemical dosimetry. The ultrasonic process is frequently combined with other preservation methods, such as heat and pressure, to more effectively deactivate microorganisms, particularly in the beverage industry. Moreover, the metamorphic technique is often used alongside modern technologies, including microwave processing, supercritical fluid extraction, extrusion, Soxhlet extraction, Cloninger distillation, enzyme extraction, and liquid/solid phase techniques, to enhance the extraction of bioactive substances.
Conclusion: This review summarizes recent advancements in ultrasound technology within the food industry, particularly for liquid foods and beverages. Although ultrasound technology has been utilized for some time, its applications in food processing are relatively new. Different ultrasound frequencies facilitate quality control and processing. Low-intensity, non-destructive ultrasound provides a straightforward method for estimating food ingredients such as shrimp, dairy, fruits, and grains. In contrast, high-intensity, invasive ultrasound alters the biochemical properties of food through cavitation. The benefits of ultrasound in liquid food processing are significant: it enhances emulsification and sterilization while preserving bioactive compounds at lower temperatures compared to conventional methods. Ultrasound can break down fats and caseins, making it suitable for producing dairy probiotic drinks, which reduces processing time and costs while creating products with unique characteristics. Potential adverse effects on key quality parameters, such as color, anthocyanins, and ascorbic acid content, are minimal and generally not problematic. Additionally, quality parameters like turbidity may improve with mild sonication.

کلیدواژه‌ها [English]

  • Ultrasound
  • Transducers
  • Non thermal processing
  • Food Processing
  1. Ortega-Rivas, E. and I. Salmerón-Ochoa, Nonthermal food processing alternatives and their effects on taste and flavor compounds of beverages. Critical reviews in food science and nutrition, 2014. 54(2): p. 190-207.
  2. Aneja, K.R., et al., Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. International journal of microbiology, 2014. 2014.
  3. Ashokkumar, M., Applications of ultrasound in food and bioprocessing. Ultrasonics sonochemistry, 2015. 25: p. 17-23.
  4. Crudo, D., et al., Process intensification in food industry: Hydrodynamic and acoustic cavitation for fresh milk treatment. 2014.
  5. Mohammadi, V., et al., Ultrasonic techniques for the milk production industry. Measurement, 2014. 58: p. 93-102.
  6. Zinoviadou, K.G., et al., Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Research International, 2015. 77: p. 743-752.
  7. Mason, T.J., High powered ultrasound in physical and chemical processing. New Acoustics. Selected Topics, 2002.
  8. Firouz, M.S., A. Farahmandi, and S. Hosseinpour, Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrasonics sonochemistry, 2019. 57: p. 73-88.
  9. Natarajan, S. and V. Ponnusamy, WITHDRAWN: A review on the applications of ultrasound in food processing. 2020, Elsevier.
  10. Ihara, I., Ultrasonic Sensing: Fundamentals and its applications to nondestructive Evaluation. Sensors: Advancements in Modeling, Design Issues, Fabrication and Practical Applications, 2008: p. 287-305.
  11. Mizrach, A., Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre-and postharvest processes. Postharvest biology and technology, 2008. 48(3): p. 315-330.
  12. Brennen, C.E., Cavitation in medicine. Interface focus, 2015. 5(5): p. 20150022.
  13. M, H.L.H.J.A.D.S.S., The Effect of Thermo-sonication Compare to pasteurization on Bioactive and Quality Parameters in Pomegranate Juice. Food Science and Technology, 2018. 15(9): p. 463-473.
  14. Pearsall, I.S., Cavitation. Chartered Mechanical Engineer, 1974. 21(7).
  15. Gogate, P.R., Hydrodynamic cavitation for food and water processing. Food and Bioprocess Technology, 2011. 4: p. 996-1011.
  16. Mason, T.J., et al., Application of ultrasound, in Emerging technologies for food processing. 2005, Elsevier. p. 323-351.
  17. Makino, K., M.M. Mossoba, and P. Riesz, Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. The Journal of physical chemistry, 1983. 87(8): p. 1369-1377.
  18. Paniwnyk, L., Applications of ultrasound in processing of liquid foods: A review. Ultrasonics Sonochemistry, 2017. 38: p. 794-806.
  19. Birwal, P., G.P. Deshmukh, and M.R. Ravindra, Nonthermal Processing of Dairy Beverages, in Milk-Based Beverages. 2019, Elsevier. p. 397-426.
  20. Zisu, B., M. Schleyer, and J. Chandrapala, Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk. International Dairy Journal, 2013. 31(1): p. 41-43.
  21. Chemat, F. and M.K. Khan, Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics sonochemistry, 2011. 18(4): p. 813-835.
  22. Lopez-Malo, A., et al., Multifactorial fungal inactivation combining thermosonication and antimicrobials. Journal of food engineering, 2005. 67(1-2): p. 87-93.
  23. Rokhina, E.V., P. Lens, and J. Virkutyte, Low-frequency ultrasound in biotechnology: state of the art. Trends in biotechnology, 2009. 27(5): p. 298-306.
  24. Show, K.-Y., T. Mao, and D.-J. Lee, Optimisation of sludge disruption by sonication. Water Research, 2007. 41(20): p. 4741-4747.
  25. Tiwari, B.K. and T.J. Mason, Chapter 6 - Ultrasound Processing of Fluid Foods, in Novel Thermal and Non-Thermal Technologies for Fluid Foods, P.J. Cullen, B.K. Tiwari, and V.P. Valdramidis, Editors. 2012, Academic Press: San Diego. p. 135-165.
  26. Mason, T.J., Sonochemistry. 1990: Royal Society of Chemistry Cambridge, UK.
  27. Ryndzionek, R. and Ł. Sienkiewicz, A review of recent advances in the single-and multi-degree-of-freedom ultrasonic piezoelectric motors. Ultrasonics, 2021: p. 106471.
  28. Gondrexon, N., et al., Intensification of heat and mass transfer by ultrasound: Application to heat exchangers and membrane separation processes. Ultrasonics sonochemistry, 2015. 25: p. 40-50.
  29. Ojha, K.S., B.K. Tiwari, and C.P. O’Donnell, Effect of ultrasound technology on food and nutritional quality, in Advances in food and nutrition research. 2018, Elsevier. p. 207-240.
  30. Gao, M., et al., Impact of ultrasonic probe type, frequency, and static pressure on large-scale graphene exfoliation. Ultrasonics Sonochemistry, 2024. 111: p. 107103.
  31. Patil, L. and P.R. Gogate, Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects. Ultrasonics Sonochemistry, 2018. 40: p. 135-146.
  32. Singla, M. and N. Sit, Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 2021. 73: p. 105506.
  33. Cullen, P.J., B.K. Tiwari, and V. Valdramidis, Novel thermal and non-thermal technologies for fluid foods. 2011: Academic Press.
  34. Mason, T. and J. Lorimer, A general introduction to sonochemistry, in Sonochemistry: the uses of ultrasound in chemistry. 1990, The Royal Society of Chemistry Cambridge, UK. p. 1-8.
  35. Dil, E.A., et al., Optimization of process parameters for determination of trace Hazardous dyes from industrial wastewaters based on nanostructures materials under ultrasound energy. Ultrasonics sonochemistry, 2018. 40: p. 238-248.
  36. Ebrahiminia, A., M. Mokhtari-Dizaji, and T. Toliyat, Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ultrasonics sonochemistry, 2013. 20(1): p. 366-372.
  37. De-Nasri, S.J., et al., Quantifying OH radical generation in hydrodynamic cavitation via coumarin dosimetry: Influence of operating parameters and cavitation devices. Ultrasonics Sonochemistry, 2022. 90: p. 106207.
  38. Ashokkumar, M., et al., Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science & Emerging Technologies, 2008. 9(2): p. 155-160.
  39. Zheng, L. and D.-W. Sun, Innovative applications of power ultrasound during food freezing processes—a review. Trends in Food Science & Technology, 2006. 17(1): p. 16-23.
  40. Villamiel, M. and P. de Jong, Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Journal of Agricultural and Food Chemistry, 2000. 48(2): p. 472-478.
  41. Ercan, S.S. and C. Soysal, Use of ultrasound in food preservation. 2013.
  42. Vo, T.P., et al., Recovering bioactive compounds from yacon (Smallanthus sonchifolius) using the ultrasonic-microwave-assisted extraction technique. Applied Food Research, 2024. 4(2): p. 100451.
  43. Castillo-Zamudio, R., et al., Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham. Innovative Food Science & Emerging Technologies, 2021. 67: p. 102557.
  44. Chen, J., et al., Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. Ultrasonics sonochemistry, 2010. 17(1): p. 66-71.
  45. García-Hernández, V.M., et al., Comparison of soxhlet and ultrasound methods for oil extraction from Spanish flaxseeds. Journal of Microbiology, Biotechnology and Food Sciences, 2019: p. 332-6.
  46. Prithani, R. and K.K. Dash, Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science & Emerging Technologies, 2020. 64: p. 102407.
  47. Roueita, G., M. Hojjati, and M. Noshad, Study of physicochemical properties of dried kiwifruits using the natural hypertonic solution in ultrasound-assisted osmotic dehydration as pretreatment. International Journal of Fruit Science, 2020. 20(sup2): p. S491-S507.
  48. Armenta, S., S. Garrigues, and M. de la Guardia, The role of green extraction techniques in Green Analytical Chemistry. TrAC Trends in Analytical Chemistry, 2015. 71: p. 2-8.
  49. Alboofetileh, M., et al., Bioactivities of Nizamuddinia zanardinii sulfated polysaccharides extracted by enzyme, ultrasound and enzyme-ultrasound methods. Journal of food science and technology, 2019. 56: p. 1212-1220.
  50. Lin, B., et al., Ultrasound-assisted enzyme extraction and properties of Shatian pomelo peel polysaccharide. Ultrasonics Sonochemistry, 2023. 98: p. 106507.
  51. Hashemi, B., et al., Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants. TrAC Trends in Analytical Chemistry, 2017. 97: p. 83-95.
  52. Natarajan, S. and V. Ponnusamy, A review on the applications of ultrasound in food processing. Materials Today: Proceedings, 2020.
  53. Nguyen, T.M.P., Y.K. Lee, and W. Zhou, Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound. International dairy journal, 2009. 19(6-7): p. 410-416.
  54. Mason, T.J., L. Paniwnyk, and F. Chemat, Ultrasound as a preservation technology, in Food preservation techniques. 2003, Elsevier. p. 303-337.
  55. Ahmed, F. and C. Russell, Synergism between ultrasonic waves and hydrogen peroxide in the killing of micro‐organisms. Journal of Applied Bacteriology, 1975. 39(1): p. 31-40.
  56. Joyce, E., et al., The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions. Ultrasonics Sonochemistry, 2003. 10(4-5): p. 231-234.
  57. Ugarte‐Romero, E., et al., Inactivation of Escherichia coli with power ultrasound in apple cider. Journal of food science, 2006. 71(2): p. E102-E108.
  58. Ordonez, J., et al., A note on the effect of combined ultrasonic and heat treatments on the survival of thermoduric streptococci. Journal of Applied Bacteriology, 1984. 56(1): p. 175-177.
  59. Hesari, J., Effect of ultrasound waves and titanium dioxide on Staphylocuccos areus and Escherichia coli in liquid Kashk. Journal of Food Processing and Preservation, 2015. 7(2): p. 1-16.
  60. Pagán, R., et al., Resistance ofListeria monocytogenesto ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiology, 1999. 16(2): p. 139-148.
  61. Seymour, I., et al., Ultrasound decontamination of minimally processed fruits and vegetables. International journal of food science & technology, 2002. 37(5): p. 547-557.
  62. Patil, S., et al., The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innovative Food Science & Emerging Technologies, 2009. 10(4): p. 486-490.
  63. Jalilzadeh, A., et al., The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese. Journal of Dairy Science, 2018. 101(7): p. 5809-5820.
  64. Hooshyar, L., et al., Effect of ultrasonication on microbial counts and physic-chemical properties of sourcherry juice. 2020.
  65. McClements, D.J., Advances in the application of ultrasound in food analysis and processing. Trends in Food Science & Technology, 1995. 6(9): p. 293-299.
  66. Riener, J., et al., A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chemistry, 2010. 119(3): p. 1108-1113.
  67. Kuldiloke, J., Effect of ultrasound, temperature and pressure treatments on enzyme activity and quality indicators of fruit and vegetable juices. 2002, Berlin, Techn. Univ., Diss., 2002.
  68. Vercet, A., P. Lopez, and J. Burgos, Inactivation of heat-resistant lipase and protease from Pseudomonas fluorescens by manothermosonication. Journal of Dairy Science, 1997. 80(1): p. 29-36.
  69. Villamiel, M. and P. de Jong, Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase® Soy Broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating. Journal of food engineering, 2000. 45(3): p. 171-179.
  70. Shoh, A., Industrial applications of ultrasound-A review I. High-power ultrasound. IEEE transactions on sonics and ultrasonics, 1975. 22(2): p. 60-70.
  71. Jenderka, K.-V. and C. Koch, Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation. Ultrasonics, 2006. 44: p. e401-e406.
  72. Harvey, G. and A. Gachagan, Simulation and measurement of nonlinear behavior in a high-power test cell. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011. 58(4): p. 808-819.
  73. Suslick, K.S. and G.J. Price, Applications of ultrasound to materials chemistry. Annual Review of Materials Science, 1999. 29(1): p. 295-326.
  74. Bates, D. and A. Patist, Industrial applications of high power ultrasonics in the food, beverage and wine industry, in Case Studies in Novel Food Processing Technologies. 2010, Elsevier. p. 119-138.
  75. Yap, A. and W. Bagnall, High power ultrasonics: a new and powerful tool for removing tartrate deposits and killing viable Brettanomyces cells in barrels. Australian and New Zealand Wine Industry Journal, 2009. 24(5): p. 29-39.
  76. Luján-Facundo, M.J., et al., Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries. Ultrasonics Sonochemistry, 2016. 33: p. 18-25.
  77. S.H. PEIGHAMBARDOUST and J. HESARI, Advanced technologies in the food industry. Vol. 0. 2015: Univercity of Tabriz.
  78. Gallego‐Juárez, J.A., Basic principles of ultrasound. Ultrasound in food processing: Recent advances, 2017: p. 1-26.
  79. Patist, A. and D. Bates, Industrial applications of high power ultrasonics, in Ultrasound technologies for food and bioprocessing. 2010, Springer. p. 599-616.
  80. De Castro, M.L. and F. Priego-Capote, Ultrasound-assisted crystallization (sonocrystallization). Ultrasonics sonochemistry, 2007. 14(6): p. 717-724.
  81. Virone, C., et al., Primary nucleation induced by ultrasonic cavitation. Journal of crystal Growth, 2006. 294(1): p. 9-15.
  82. Keyhani, V., et al., Ultrasound-assisted extraction of saponins from chubak plant (Acanthophyllum Glandulosum) root based on their emulsification and foaming properties. Research and Innovation in Food Science and Technology, 2016. 4(4): p. 325-342.
  83. Basiri, S., et al., An investigation on the effect of ultrasound waves and pretreatment methods on the extraction of oil from pomegranate seeds. 2011.
  84. Pangu, G.D. and D.L. Feke, Acoustically aided separation of oil droplets from aqueous emulsions. Chemical Engineering Science, 2004. 59(15): p. 3183-3193.
  85. Noshad, M., M.A. Mehrnia, and N. Dehghan, Evaluation of physicochemical properties of pectin extracted from eggplant waste using ultrasound technique. Iranian Food Science & Technology Research Journal, 2019. 15(4): p. 477-484.
  86. Jafarzadeh-Moghaddam, M., et al. Optimization of ultrasonically assisted extraction of pectin from sugar beet pulp. in Biol Forum Int J. 2016.
  87. Tutunchi, P., et al., Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chemistry, 2019. 297: p. 124994.
  88. Kim, S. and J. Zayas, Comparative quality characteristics of chymosin extracts obtained by ultrasound treatment. Journal of food science, 1991. 56(2): p. 406-410.
  89. Sakakibara, M., et al., Effect of ultrasonic irradiation on production of fermented milk with Lactobacillus delbrueckii. Ultrasonics Sonochemistry, 1994. 1(2): p. S107-S110.
  90. Sorourian, R., et al., Ultrasound-assisted extraction of polysaccharides from Typha domingensis: Structural characterization and functional properties. International Journal of Biological Macromolecules, 2020. 160: p. 758-768.
  91. Sakooei-Vayghan, R., et al., Effects of osmotic dehydration (with and without sonication) and pectin-based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food chemistry, 2020. 311: p. 125978.
  92. Hooshyar, L., J. Hesari, and S. Azadmard-Damirchi, Investigation of selected thermal and non-thermal preservative techniques to produce high quality and safe to drink sour cherry, red grape and pomegranate juices. Journal of food science and technology, 2020. 57: p. 1689-1697.
  93. Hooshyar, L., et al., The effect of thermal sonication of bioactive compounds and some of the quality parameters of sour cherry juice compared to the usual pasteurization method. Journal of Food Hygiene, 2019. 9(33).
  94. Dahroud, B.D., et al., Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp. casei ATTC 39392. International journal of biological macromolecules, 2016. 86: p. 462-467.
  95. Qiu, L., et al., Application of power ultrasound in freezing and thawing Processes: Effect on process efficiency and product quality. Ultrasonics sonochemistry, 2020. 68: p. 105230.
  96. Chow, R., et al., A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics, 2005. 43(4): p. 227-230.
  97. Dalvi-Isfahan, M., et al., Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. Journal of Food Engineering, 2017. 195: p. 222-234.
  98. Kiani, H. and D.-W. Sun, Numerical simulation of heat transfer and phase change during freezing of potatoes with different shapes at the presence or absence of ultrasound irradiation. Heat and Mass Transfer, 2018. 54: p. 885-894.
  99. Martini, S., A. Suzuki, and R. Hartel, Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. Journal of the American Oil Chemists' Society, 2008. 85: p. 621-628.
  100. Mortazavi, A. and F. Tabatabaie, Study of ice cream freezing process after treatment with ultrasound. World Applied Sciences Journal, 2008. 4(2): p. 188-190.
  101. Kowalski, S., D. Mierzwa, and M. Stasiak, Ultrasound-assisted convective drying of apples at different process conditions. Drying Technology, 2017. 35(8): p. 939-947.
  102. Huang, D., et al., Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 2020. 63: p. 104950.
  103. Gibert, J.M., G. Fadel, and M.F. Daqaq, On the stick-slip dynamics in ultrasonic additive manufacturing. Journal of Sound and Vibration, 2013. 332(19): p. 4680-4695.
  104. Schneider, Y., et al., Ultrasonic excitation affects friction interactions between food materials and cutting tools. Ultrasonics, 2009. 49(6-7): p. 588-593.
  105. Alarcon-Rojo, A., et al., Power ultrasound in meat processing. Meat science, 2015. 107: p. 86-93.
  106. Kiani, H., D.-W. Sun, and Z. Zhang, The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere. Ultrasonics sonochemistry, 2012. 19(6): p. 1238-1245.
  107. Patist, A. and D. Bates, Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative food science & emerging technologies, 2008. 9(2): p. 147-154.
  108. Chandrapala, J., et al., The effect of ultrasound on casein micelle integrity. Journal of dairy science, 2012. 95(12): p. 6882-6890.
  109. Asefi, N. and P. Jafarian, The Effect Of Ultrasonic Homogenization On Water Holding Capacity Of Yoghurt. 2013.
  110. Aadil, R.M., et al., Combined effects of sonication and pulsed electric field on selected quality parameters of grapefruit juice. LWT-Food Science and Technology, 2015. 62(1): p. 890-893.
  111. Iida, Y., et al., Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science & Emerging Technologies, 2008. 9(2): p. 140-146.
  112. Abid, M., et al., Effect of ultrasound on different quality parameters of apple juice. Ultrasonics sonochemistry, 2013. 20(5): p. 1182-1187.
  113. Khandpur, P. and P.R. Gogate, Understanding the effect of novel approaches based on ultrasound on sensory profile of orange juice. Ultrasonics sonochemistry, 2015. 27: p. 87-95.
  114. Hesari, J., et al., The Effect of Thermal Sonication on the Chemical Properties of Red Grape Juice Compared to the usual Pasteurization Method. Food Processing and Preservation Journal, 2020. 11(2): p. 21-34.
  115. Silva, E.K., et al., Encapsulation of bioactive compounds using ultrasonic technology, in Ultrasound: Advances for food processing and preservation. 2017, Elsevier. p. 323-350.
  116. Sarode, C., Y. Jagtap, and P. Gogate, Ultrasound for Improved Encapsulation and Crystallization with Focus on Pharmaceutical Applications, in Optimization of Pharmaceutical Processes. 2022, Springer. p. 193-229.
  117. Mongenot, N., S. Charrier, and P. Chalier, Effect of ultrasound emulsification on cheese aroma encapsulation by carbohydrates. Journal of Agricultural and Food chemistry, 2000. 48(3): p. 861-867.
  118. Soria, A.C. and M. Villamiel, Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in food science & technology, 2010. 21(7): p. 323-331.
  119. Turantaş, F., G.B. Kılıç, and B. Kılıç, Ultrasound in the meat industry: General applications and decontamination efficiency. International journal of food microbiology, 2015. 198: p. 59-69.
  120. Wang, A., et al., Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry, 2018. 245: p. 724-730.
  121. Cárcel, J., et al., High intensity ultrasound effects on meat brining. Meat Science, 2007. 76(4): p. 611-619.
  122. Chang, H.J., et al., Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle. Journal of Food Quality, 2015. 38(4): p. 256-267.
  123. Stadnik, J. and Z.J. Dolatowski, Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). European Food Research and Technology, 2011. 233: p. 553-559.
  124. Bhargava, N., et al., Advances in application of ultrasound in food processing: A review. Ultrasonics sonochemistry, 2021. 70: p. 105293.
  125. Azam, S.R., et al., Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends in Food Science & Technology, 2020. 97: p. 417-432.
  126. Chen, F., M. Zhang, and C.-h. Yang, Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrasonics sonochemistry, 2020. 63: p. 104953.
  127. Jamal Abadi, M. and S. Sarem Nejad, Investigation on the Physicochemical Properties of Ultrasound Treated Wheat Starch. Journal of food science and technology(Iran), 2015. 13(53): p. 127-136.
  128. Ross, K., L. Pyrak-Nolte, and O. Campanella, The use of ultrasound and shear oscillatory tests to characterize the effect of mixing time on the rheological properties of dough. Food Research International, 2004. 37(6): p. 567-577.
  129. Akdeniz, V. and A.S. Akalın, New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends in Food Science & Technology, 2019. 86: p. 392-398.
  130. Esmaeilzadeh Kenari, R. and A. Nemati, The effectiveness of ultrasound bath and probe treatments on the quality of baking and shelf life of cupcakes. Food Science & Nutrition, 2020. 8(6): p. 2929-2939.
  131. Zhang, Z., et al., Hydrodynamic cavitation as an efficient method for the formation of sub-100 nm O/W emulsions with high stability. Chinese Journal of Chemical Engineering, 2016. 24(10): p. 1477-1480.
  132. Anandan, S., et al., Physicochemical characterization of black seed oil-milk emulsions through ultrasonication. Ultrasonics Sonochemistry, 2017. 38: p. 766-771.
  133. Leong, T.S., et al., Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil. Food Hydrocolloids, 2017. 63: p. 685-695.
  134. Shanmugam, A. and M. Ashokkumar, Functional properties of ultrasonically generated flaxseed oil-dairy emulsions. Ultrasonics sonochemistry, 2014. 21(5): p. 1649-1657.
  135. Mahamuni, N.N. and Y.G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics sonochemistry, 2010. 17(6): p. 990-1003.
  136. Kyllönen, H., et al., Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater. Ultrasonics sonochemistry, 2006. 13(4): p. 295-302.
  137. Mason, T., et al., Potential uses of ultrasound in the biological decontamination of water. Ultrasonics sonochemistry, 2003. 10(6): p. 319-323.
  138. Peña-González, E., et al., Quality and sensory profile of ultrasound-treated beef. Italian Journal of Food Science, 2017. 29(3).
  139. Miles, C., M. Morley, and M. Rendell, High power ultrasonic thawing of frozen foods. Journal of Food Engineering, 1999. 39(2): p. 151-159.
  140. Nollet, L.M., et al., Handbook of meat, poultry and seafood quality. 2012: Wiley Online Library.
  141. Dikeman, M., Animal growth and empty body composition. The science of meat quality, 2013: p. 29-48.
  142. Li, D., et al., The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food chemistry, 2020. 320: p. 126614.
  143. Caraveo, O., et al., Physicochemical and microbiological characteristics of beef treated with high‐intensity ultrasound and stored at 4°C. Journal of the Science of Food and Agriculture, 2015. 95(12): p. 2487-2493.
  144. Kang, D., et al., Inactivation of Escherichia coli O157: H7 and Bacillus cereus by power ultrasound during the curing processing in brining liquid and beef. Food Research International, 2017. 102: p. 717-727.
  145. Mulet, A., et al., Noninvasive ultrasonic measurements in the food industry. Food Reviews International, 2002. 18(2-3): p. 123-133.
  146. Barekat, S. and N. Soltanizadeh, Effects of ultrasound on microstructure and enzyme penetration in beef longissimus lumborum muscle. Food and Bioprocess Technology, 2018. 11: p. 680-693.
  147. Kang, D.-c., et al., Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification. Ultrasonics Sonochemistry, 2017. 38: p. 317-325.
  148. Zou, Y., et al., Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. International Journal of Food Science and Technology, 2018. 53(3): p. 828-836.
  149. Arce-Garcia, M., et al. Ultrasound treatments and antimicrobial agents effects on Zygosaccharomyces rouxii. in IFT Annual Meeting Book of Abstracts. 2002.
  150. Hatloe, J., Methods for pickling and/or marinating non-vegetable foodstuff raw material. Int. Pat. WO, 1995. 9518537.
  151. Sánchez, E.S., et al., Effect of acoustic brining on the transport of sodium chloride and water in Mahon cheese. European Food Research and Technology, 2000. 212: p. 39-43.
  152. Allen, V.M., et al., Effect of ultrasonic treatment during cleaning on the microbiological condition of poultry transport crates. British poultry science, 2008. 49(4): p. 423-428.
  153. Sarbaz, N., M. Dost, and M. Aliabadi, Evaluation of the effect of ultrasonic pretreatment on the kinetics of mass transfer and physicochemical and sensory properties of deep-fried turkey meat fillet. 2018.
  154. Crews Jr, D. and R. Kemp, Genetic evaluation of carcass yield using ultrasound measures on young replacement beef cattle. Journal of animal science, 2002. 80(7): p. 1809-1818.
  155. da Silva Malheiros, P., et al., Development and characterization of phosphatidylcholine nanovesicles containing the antimicrobial peptide nisin. Food Research International, 2010. 43(4): p. 1198-1203.
  156. Zhou, Q., et al., The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food chemistry, 2019. 298: p. 125007.
  157. Yu, C., et al., A new household ultrasonic cleaning method for pyrethroids in cabbage. Food Science and Human Wellness, 2020. 9(3): p. 304-312.
  158. Deshmukh, N.S. and M.P. Deosarkar, A review on ultrasound and photocatalysis-based combined treatment processes for pesticide degradation. Materials Today: Proceedings, 2022. 57: p. 1575-1584.
  159. Cengiz, M.F., et al., A novel technique for the reduction of pesticide residues by a combination of low-intensity electrical current and ultrasound applications: A study on lettuce samples. Food Chemistry, 2021. 354: p. 129360.
  160. Valente, M., A. Prades, and D. Laux, Potential use of physical measurements including ultrasound for a better mango fruit quality characterization. Journal of Food Engineering, 2013. 116(1): p. 57-64.
  161. Santos, J.G., et al., Influence of ultrasound on fresh-cut mango quality through evaluation of enzymatic and oxidative metabolism. Food and Bioprocess Technology, 2015. 8: p. 1532-1542.
  162. Contreras, N.I., et al., Analysis of the sugar content of fruit juices and drinks using ultrasonic velocity measurements. International journal of food science & technology, 1992. 27(5): p. 515-529.
  163. Elmehdi, H., J. Page, and M. Scanlon, Using ultrasound to investigate the cellular structure of bread crumb. Journal of Cereal Science, 2003. 38(1): p. 33-42.
  164. Skaf, A., et al., A new acoustic technique to monitor bread dough during the fermentation phase. Journal of Food Engineering, 2009. 93(3): p. 365-378.
  165. Petrauskas, A., Evaluation of porous food products by using ultrasonic methods. Ultragarsas/Ultrasound, 2007. 62(3): p. 20-25.
  166. Karimi, M., et al., The effect of ultrasound on some characteristics of wheat and potato starch. 2008.
  167. Maghsoudlou, Y., S.R. Falsafi, and H. Rostamabadi, Effect of sonication on physical, chemical and functional properties of oat starch. Journal of Food Processing and Preservation, 2020. 12(1): p. 145-160.
  168. KHODABADI, F.N., et al., Effect of Ultrasound on Drying Kinetics of Rough Rice at Tempering Duration in an Infrared-Hot Air Combined Dryer. 2020.
  169. Jalali, M., et al., The effect of the ultrasound process and pre-gelatinization of the corn flour on the textural, visual, and sensory properties in gluten-free pan bread. Journal of Food Science and Technology, 2020. 57: p. 993-1002.
  170. Zhang, Y., et al., Effects of ultrasound-assisted freezing on the water migration of dough and the structural characteristics of gluten components. Journal of Cereal Science, 2020. 94: p. 102893.
  171. Wang, J., et al., Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food chemistry, 2008. 106(2): p. 804-810.
  172. Wang, J., et al., Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food chemistry, 2014. 150: p. 482-488.
  173. Emamiyan, M., et al., Extraction of pentosans from wheat bran by conventional and combined methods. Journal of food science and technology(Iran), 2020. 16(97): p. 37-49.
  174. Gorji, N., et al., Evaluation of physicochemical properties of sour-orange seed oil extracted by different methods. Journal of food science and technology(Iran), 2015. 13(54): p. 121-133.
  175. Naghipour, f., et al., sorghum pretreatment by ultrasound for improvement of β-glucan extraction by hot water method and evaluation of it's physicochemical properties. 2018.
  176. Hromadkova, Z., A. Ebringerova, and P. Valachovič, Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L. Ultrasonics sonochemistry, 1999. 5(4): p. 163-168.
  177. Benito-Román, Ó., E. Alonso, and M. Cocero, Ultrasound-assisted extraction of β-glucans from barley. LWT-Food Science and Technology, 2013. 50(1): p. 57-63.
  178. Șengül, M., et al., The effect of ultrasonic homogenization on water holding capacity of yogurt. 2009.
  179. Ostadzadeh, M., S. Abbasi, and M.R. Ehsani, Effect of ultrasonication on cacao particle size, color, viscosity, and sensory properties of cacao flavored milk. 2012.
  180. Sfakianakis, P. and C. Tzia, Conventional and innovative processing of milk for yogurt manufacture; development of texture and flavor: A review. Foods, 2014. 3(1): p. 176-193.
  181. Gómez, M., et al., Characterization of cake batters by ultrasound measurements. Journal of Food Engineering, 2008. 89(4): p. 408-413.
  182. Liu, Z., et al., Ultrasound improves the renneting properties of milk. Ultrasonics sonochemistry, 2014. 21(6): p. 2131-2137.
  183. Wu, H., G.J. Hulbert, and J.R. Mount, Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies, 2000. 1(3): p. 211-218.
  184. Bahri, S.M.H. and R. Kenari, The effects of ultrasound waves on yield, texture and some qualitative characteristics of cheese. Iranian Food Science and Technology Research Journal, 2018. 14(3): p. 41-51.
  185. Kot, A., A. Kamińska-Dwórznicka, and E. Jakubczyk, Study on the influence of ultrasound homogenisation on the physical properties of vegan ice cream mixes. Applied sciences, 2022. 12(17): p. 8492.
  186. Kamińska-Dwórznicka, A. and A. Kot, The Physical Properties and Crystal Structure Changes of Stabilized Ice Cream Affected by Ultrasound-Assisted Freezing. Processes, 2024. 12(9): p. 1957.
  187. Jambrak, A., et al., Experimental design and optimization of ultrasound treatment: Functional and physical properties of sonicated ice cream model mixtures. J. Food Process. Technol, 2012. 3: p. 145.
  188. Mason, T.J., Developments in ultrasound—non-medical. Progress in biophysics and molecular biology, 2007. 93(1-3): p. 166-175.
  189. Luque de Castro, M. and F. Priego-Capote, Ultrasound-assisted crystallization (sonocrystallization). Ultrasonics sonochemistry, 2007. 14(6): p. 717-724.
  190. Jiménez, A., et al., Contributions to ultrasound monitoring of the process of milk curdling. Ultrasonics, 2017. 76: p. 192-199.
  191. Derra, M., et al., Estimation of coagulation time in cheese manufacture using an ultrasonic pulse-echo technique. Journal of Food engineering, 2018. 216: p. 65-71.
  192. Derra, M., et al., Prediction of milk coagulation time using an ultrasonic experimental and theoretical method based on Argand diagram. Journal of Food Measurement and Characterization, 2017. 11: p. 1851-1862.
  193. Benedito, J., et al., Use of ultrasound to assess Cheddar cheese characteristics. Ultrasonics, 2000. 38(1-8): p. 727-730.
  194. Crespo, A., et al., Application of ultrasound for quality control of Torta del Casar cheese ripening. Journal of Dairy Science, 2020. 103(10): p. 8808-8821.
  195. Benedito, J., et al., Cheese maturity assessment using ultrasonics. Journal of Dairy Science, 2000. 83(2): p. 248-254.
  196. Jin, Y., et al., Effects of ultrasound on cross-flow ultrafiltration of skim milk: Characterization from macro-scale to nano-scale. Journal of membrane science, 2014. 470: p. 205-218.
  197. Juliano, P., et al., Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrasonics sonochemistry, 2011. 18(5): p. 963-973.
  198. Scudino, H., et al., Ultrasound stabilization of raw milk: Microbial and enzymatic inactivation, physicochemical properties and kinetic stability. Ultrasonics sonochemistry, 2020. 67: p. 105185.
  199. Babaei, F., J. Hessari, and H. Jadeiri, Application of ultrasound waves in the dairy industry, in The First National Conference on Developing Comprehensive Strategic Quality in Food Safety. 2014.
  200. Cho, B., J. Irudayaraj, and M.C. Bhardwaj, Rapid measurement of physical properties of Cheddar Cheese using a non–contact ultrasound technique. Transactions of the ASAE, 2001. 44(6): p. 1759.
  201. Zhu, Z., et al., Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 2018. 106: p. 853-861.
  202. Higuera-Barraza, O., et al., Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics sonochemistry, 2016. 31: p. 558-562.
  203. Carpenter, J. and V.K. Saharan, Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. Ultrasonics Sonochemistry, 2017. 35: p. 422-430.
  204. Albano, K.M. and V.R. Nicoletti, Ultrasound impact on whey protein concentrate-pectin complexes and in the O/W emulsions with low oil soybean content stabilization. Ultrasonics Sonochemistry, 2018. 41: p. 562-571.
  205. Yanjun, S., et al., Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. Journal of Food Engineering, 2014. 124: p. 11-18.
  206. Farizad, S. and H. Abbasi, Effect of ultrasonic waves on structural, functional and rheological properties of locust bean gum. Iranian Food Science and Technology Research Journal, 2023. 19(2): p. 365-381.
  207. Perdih, T.S., M. Zupanc, and M. Dular, Revision of the mechanisms behind oil-water (O/W) emulsion preparation by ultrasound and cavitation. Ultrasonics sonochemistry, 2019. 51: p. 298-304.
  208. Plüisch, C.S. and A. Wittemann, Assembly of nanoparticles into “colloidal molecules”: toward complex and yet defined colloids with exciting perspectives. Advances in Colloid Science, 2016: p. 237-264.
  209. Ren, H.-Y., et al., Ultrasonic enhanced simultaneous algal lipid production and nutrients removal from non-sterile domestic wastewater. Energy Conversion and Management, 2019. 180: p. 680-688.
  210. Chang, J.-H., et al., The electrochemical phenomena and kinetics of EDTA–copper wastewater reclamation by electrodeposition and ultrasound. Separation and Purification Technology, 2009. 68(2): p. 216-221.
  211. Li, D., et al., Optimization of the operating parameters for online ultrasonic on controlling membrane fouling in SMBR. Desalination and Water Treatment, 2013. 51(19-21): p. 3832-3839.
  212. Wang, Z., et al., Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Science of The Total Environment, 2020. 708: p. 135063.
  213. Yin, X., et al., A review on the dewaterability of bio-sludge and ultrasound pretreatment. Ultrasonics Sonochemistry, 2004. 11(6): p. 337-348.
  214. Mason, T.J., Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrasonics Sonochemistry, 2003. 10(4-5): p. 175-179.