بررسی سینتیک و مدلسازی خشک کردن رزماری (Rosmarinus officinalis ‌L.) با استفاده از مادون قرمز

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گلستان، ایران

چکیده

سابقه و هدف: گیاه رزماری، بوته‌ای همیشه سبز و معطر از خانواده‌ی نعناعیان است که دارای خواص آنتی اکسیدانی و دارویی زیادی است. امروزه جهت افزایش میزان استحصال اسانس و بهبود کیفیت اسانس، ابتدا گیاه مورد نظر خشک شده و سپس اسانس گیری انجام می‌شود. لذا روش‌های جدید، برای خشک کردن گیاهان دارای اسانس، مورد مطالعه می‌باشد. در گذشته در مورد رزماری روش‌های خشک کردن مختلفی از جمله، هوای داغ، مایکروویو، انجمادی، آفتابی و ...، توسط محققین مختلف به کار برده شده و کیفیت اسانس استحصالی و سینتیک انتقال جرم، مورد بررسی قرار گرفته است. اما امروزه خشک کردن با مادون قرمز، برای بسیاری از محصولات کشاورزی مورد توجه قرارگرفته است که این روش در مورد رزماری تاکنون به کار گرفته نشده است. لذا هدف از این تحقیق، بررسی تاثیر خشک کردن مادون قرمز بر حجم و رنگ و کیفیت اسانس برگ‌های رزماری و مطالعه سنتیک خشک کردن و همچنین مدل‌سازی فرآیند خشک کردن مادون قرمز و مقایسه با سایر روش‌های خشک کردن، بود.
مواد و روش‌ها: در این مطالعه ابتدا، خواص هندسی برگ‌های رزماری، توسط میکرومتر میتوتویو اندازه‌گیری شد. سپس با استفاده از پرتودهی امواج الکترومغناطیس در محدوده‌ی طیف مادون قرمز (100، 200 و 300 وات)، برگ‌های تازه چین شده‌ی گیاه رزماری (Rosmarinus officinalis L.)، خشک شدند و پس از اسانس‌گیری با روش کلونجر میزان استحصال اسانس و ترکیبات اسانس (با استفاده از گاز کروماتوگرافی جرمی) محاسبه و با توجه به توان تابش امواج مادون قرمز، با استفاده از طرح کاملا تصادفی، مورد مقایسه قرار گرفت. کیفیت رنگ رزماری های خشک شده و اسانس به دست آمده نیز با نرم افزار ایمیج جی، مورد مطالعه قرار گرفت و پارامترهای *L، *a، b*، شاخص کروما، اندیس قهوه ای شدن، اختلاف رنگ کل و زاویه هیو محاسبه و با روش طرح کاملا تصادفی مورد مقایسه قرار گرفت. علاوه بر این با استفاده از داده‌های مربوط به رطوبت سنجی، منحنی‌های زمان و روند خشک‌کردن، رسم و ضرائب نفوذ موثر و میزان انرژی فعال‌سازی، تعیین گردید.
یافته‌ها: با توجه به نتایج آنالیز واریانس و مقایسه میانگین دانکن در سطح 5 درصد، مشاهده شد که با افزایش توان لامپ مادون قرمز در فرآیند خشک کردن، پارامترهای L، b، Chroma و BI در رزماری خشک شده، کاهش و پارامترهای ΔE، a* و Hue angel افزایش داشتند. همچنین افزایش توان مادون قرمز اثر معنی داری بر کاهش حجم اسانس تولیدی داشت. در مورد رنگ اسانس نیز مشاهده شد که با افزایش توان لامپ مادون قرمز، پارامترهای *L و a* و Hue angel کاهش و پارامترهای b*، BI و Chroma افزایش داشتند. همچنین مشاهده شد که افزایش توان مادون قرمز در فرآیند خشک کردن رزماری، تاثیر معنی‌داری بر کاهش میزان ترکیبات فرار موجود در اسانس رزماری دارد. ضرائب نفوذ موثر از 9-10×33/3 تا 8-10×907/1 متغیر بود. انرژی فعال‌سازی نیز kW/kg 243/30 تعیین شد. با بهره‌گیری از هشت مدل شناخته شده و با استفاده از نرم افزار متلب2016، مدل‌سازی رگرسیونی انجام شد و مدل Midilli برای توان‌های 200 و 300 وات و مدل Verma et al برای توان 100 وات، جهت پیش بینى روند خشک شدن، انتخاب گردیدند.
نتیجه گیری: افزایش توان مادون قرمز طی فرآیند خشک کردن برگ‌های رزماری، سبب کاهش راندمان اسانس گیری می‌شود. همچنین افزایش توان مادون قرمز تاثیر مستقیم و معنی داری در کاهش مواد موثره ی موجود در اسانس مانند سینئول و بتاپینن می-گردد. رنگ رزماری خشک شده و اسانس حاصل از آن تحت تاثیر توان تابش مادون قرمز قرارگرفته و با افزایش توان تغییر می‌کند. افزایش توان تابش مادون قرمز، سبب افزایش ضرایب نفوذ موثر می‌گردد. مدل‌های میدیلی و ورما و همکاران بهترین مدل‌ها، برای پیشگویی رفتار خشک شدن رزماری هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling Kinetics of Rosemary Drying (Rosmarinus officinalis L.) Using Infrared

نویسندگان [English]

  • Seyyed Sajjad Hosseini
  • Mahdi Kashani nejad
  • Habibollah Mirzaei
  • Yahya Maghsoudlou
Faculty of Food Science, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
چکیده [English]

Background:
Rosemary is an evergreen and aromatic plant of the mint family, which has many antioxidant and medicinal properties. Nowadays, to increase the quantity of extraction and improve the quality of essence, the plant is dried and then the extraction process is performed. Thus, new and combined methods for drying of plants containing essence have been studied. Different drying methods such as hot air, microwave, microwave- vacuum, sun and freeze drying have been studied by many researcher to dry rosemary and the quality of the extracted essence and the kinetics of mass transfer have been investigated. Drying by means of infrared is considered for many agricultural products but this method has not been applied to rosemary until now. Therefore, the purpose of this study was to investigate the kinetics of drying and the effect of infrared drying on the volume, color and quality of essence of rosemary leaves. Our specific target was modeling of the infrared drying process and compare it with other drying methods.
Materials and Methods:
In this study, the geometric properties of rosemary leaves were measured by Mitutoyo Micrometer. Then, by using electromagnetic radiation in the range of infrared spectrum (100, 200 and 300watts) freshly prepared leaves of rosemary were dried. After essence extraction by clevenger method, the volume of extraction and components were determined by GC/MS and according to the power of infrared wavelength were evaluated by completely randomized design. The quality of dried rosemary and essences were also studied by ImageJ software, and color parameters a*, b*, L*, chroma (C*), browning index, total color difference and Hue angle, were calculated by completely randomized design. In addition, drying curves, effective diffusivities and activation energy determined by using moisture measurement data.
Results:
According to the results of analysis of variance and Duncan's Multiple Range test at 5% level, it was observed that with increasing the power of the infrared lamp in the drying process, color parameters like L, b, Chroma and BI in dried rosemary decreased and ΔE, A and Hue angel increased. Analysis of variance and comparison of Duncan's mean at 5% level showed that increasing the infrared power has a significant effect on reducing the volume of essence. In the case of essence color, it was perceived that with increasing the power of the infrared lamp, the color parameters like A, L and Hue angel decreased and b, BI and Chroma increased. Furthermore, increasing the infrared power in the drying process of rosemary has a significant effect on reducing the volatile compounds of rosemary essence. Effective diffusivities varied from 33.3×9.10-9 to 1.0907×10-8. The activation energy was also determined as 30.243 kW/kg. To predict the rosemary drying trend by using eight models, regression modeling was performed through MATLAB software (version 2016). Results showed that, Midilli model for the power of 200 and 300 watts and Verma model for the power of 100 watts, due to high correlation coefficient index and low standard error, were two suitable models for evaluation of Drying kinetic and prediction of drying process.
Conclusion:
Increasing infrared power during drying process of rosemary leaves decreases the efficiency of essence extraction. Moreover, increasing the infrared power has a significant effect on reducing the active ingredients like cineol and Beta-Pinene in essence. The color of dried rosemary and extracted essence are affected by infrared radiation power and varies with increasing the power. Rising the infrared radiation power results in an increase in the effective diffusivity coefficients. Also, it can be concluded that, midilli and verma are two best models for prediction of drying trend of rosemary.

کلیدواژه‌ها [English]

  • Rosemary
  • Drying
  • Essence
  • Modeling
  • Infrared
  1. 1.Arslan, D., and Özcan, M.M. 2008. Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves. Energy Conversion and Management. 49: 5.1258-1264.

    2.Corzo, O., Bracho, N., Pereira, A., and Vásquez, A. 2008. Weibull distribution for modeling air drying of coroba slices. LWT-Food Science and Technology. 41: 10.2023-2028.

    3.Doymaz, I. 2007. Air-drying characteristics of tomatoes. Journal of Food engineering. 78:4. 1291-1297.

    4.Doymaz, I. 2013. Determination of infrared drying characteristics and modelling of drying behaviour of carrot pomace. Journal of agricultural sciences. 19: 1. 44-53.

    5.Giri, S.K., and Prasad, S. 2007. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of food engineering. 78: 2.512-521.

    6.Henderson, S.M. 1974. Progress in developing the thin layer drying equation. Transactions of the ASAE. 17: 6. 1167-1168.

    7.Lenart, A. 1996. Osmo-convective drying of fruits and vegetables: technology and application. Drying technology.14: 2.391-413.

    8.Midilli, A., Kucuk H., and Yapar, Z. 2002. A new model for single-layer drying. Drying technology.20: 7.1503-1513.

    9.Pan, Z., and Atungulu, G.G. 2010. Infrared heating for food and agricultural processing: CRC Press.

    1. Rayaguru K, and Routray W. 2011. Microwave drying kinetics and quality characteristics of aromatic Pandanus amaryllifolius leaves. International Food Research Journal. 18:3.
    2. Sharma, G., Verma, R., and Pathare, P. 2005. Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of food engineering.71: 3.282-6.
    3. Singh, B., and Gupta, A. 2007. Mass transfer kinetics and determination of effective diffusivity during convective dehydration of pre-osmosed carrot cubes. Journal of Food Engineering.79: 2.459-70.
    4. Toğrul, H. 2006. Suitable drying model for infrared drying of carrot. Journal of food engineering. 77: 3.610-9.
    5. Verma, L.R., Bucklin, R., Endan, J., and Wratten, F. 1985. Effects of drying air parameters on rice drying models. Transactions of the ASAE.28:1.296-0301.
    6. Wang, C.Y., and Singh, R.P. 1978. Use of variable equilibrium moisture content in modeling rice drying. Paper- American Society of Agricultural Engineers. 11: 6.668-672.
    7. Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J., and Hu, X. 2007. Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40: 1.39-46.
    8. Yildiz, O., and Ertekin, C. 2001. Thin layer solar drying of some different vegetables. Drying Technology-An International Journal. 19: 583-96.
    9. Zhang, Q., and Litchfield, J. 1991. An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology. 9: 2.383-95.
    10. Zhu, Y., Pan, Z., McHugh, T.H., and Barrett, D.M. 2010. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating. Journal of food engineering. 97: 1.8-16.