بررسی و تعیین مناسب‌ترین شرایط خشک‌کردن دانه کنجد با روش سطح پاسخ

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استاد یار بخش تحقیقات فنی و مهندسی کشاورزی مرکز تحقیقات کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات آموزش وترویج کشاورزی، گرگان ایران.

2 استاد بخش تحقیقات علوم زراعی مرکز تحقیقات کشاورزی و منابع طبیعی گیلان، سازمان تحقیقات آموزش وترویج کشاورزی، گرگان، ایران.

3 دانشجوی کارشناسی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان. ایران

چکیده

سابقه و هدف: کنجد یکی از دانه‌های روغنی مهم دنیا است که از نظر ارزش غذایی پس از زیتون در رتبه دوم قرار دارد. با توجه به واردات بالای روغن خام، همچنین ویژگی‌های خاص کنجد و سازگاری آن با شرایط آب‌وهوایی اکثر نقاط کشور، می‌تواند به‌عنوان یک دانه روغنی در تأمین روغن و کاهش وابستگی به واردات بسیار مؤثر باشد. به دلیل برداشت سخت و غیرمکانیزه کنجد، اخیراً ارقامی جدید از کنجد ناشکوفا در حال گسترش است که می‌تواند در افزایش تولید روغن مؤثر باشد. بنابراین بررسی فرایندها و عملیات پس از برداشت، به‌ویژه عملیات خشک‌کردن دانه، از اهمیت خاصی برخوردار است. دانه کنجد پس از برداشت، به‌خصوص در مناطق با رطوبت نسبی بالا، به دلیل فعالیت تنفسی زیاد، گرما و رطوبت ناشی از تنفس، باید بلافاصله خشک شود. از آنجا که رطوبت اولیه دانه، دما و سرعت خشک‌کردن از عوامل مهم تأثیرگذار بر فرایند خشک‌کردن و کیفیت روغن دانه کنجد هستند، در این تحقیق به تعیین شرایط بهینه پرداخته شد.
مواد و روش: نمونه کنجد مورد بررسی واریته مقاوم به ریزش اولتان بود که با مدیریت زراعی مناسب در ایستگاه تحقیقاتی کشت و از اواخر مهر‌ماه هم‌زمان با رسیدگی فیزیولوژیک دانه برداشت شد. در این تحقیق دانه‌ها با رطوبت اولیه (12- 18) درصد برداشت و با دماهای (50-70) درجه سلسیوس و سرعت هوای (5/0- 5/1) متر بر ثانیه، خشک شدند. شرایط بهینه خشک‌کردن دانه کنجد با تعیین مقدار کل روغن، اسیدیته، شاخص پراکسید و رنگ روغن بررسی شد. بهینه‌یابی به روش سطح پاسخ در قالب طرح مرکب مرکزی و با استفاده از نرم‌افزار Design-Expert انجام شد. ارتباط بین متغیرها و پاسخ‌ها به‌وسیله نمودارهای سه‌بعدی، با بررسی هم‌زمان دو متغیر و ثابت نگه داشتن متغیر سوم در نقطه میانی، شناسایی شد.
یافته‌ها: نتایج تحلیل واریانس داده‌ها نشان داد که اثر عوامل مستقل شامل دما، رطوبت، سرعت، اثرات متقابل و اثرات درجه دوم آن‌ها بر اسیدیته، شاخص پراکسید، رنگ و مقدار روغن در مدل چندجمله‌ای درجه دوم معنادار بود (01/0> P). معنی‌داری ضرایب در مدل‌های مختلف با استفاده از تحلیل واریانس برای هر پاسخ تعیین شد. نتایج حاکی از آن بود که خصوصیات کیفی روغن در شرایط بهینه خشک‌کردن دانه با کمینه مقادیر شاخص‌های اسیدیته، پراکسید و رنگ به ترتیب 71/0 درصد، 08/1 میلی اکی والان بر کیلو گرم، شاخص رنگ 6/28 و بیشینه مقدار روغن 7/49 درصد حاصل شد.
نتیجه‌گیری: شرایط بهینه خشک‌کردن دانه کنجد ناشکوفا، در رطوبت اولیه 14 درصد، دمای 56 درجه سلسیوس و سرعت خشک‌کردن 1 متر بر ثانیه به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation and determination of the most suitable conditions for drying sesame by using Response Surface Methodology

نویسندگان [English]

  • Jalal Mohammadzadeh 1
  • Abolfazl Faraji 2
  • Amir farzad Mohammadzadeh 3
1 Assistant Professor, Department of Agricultural Engineering Research, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
2 Professor, Department of Seed and plant improvement Research, Gilan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
3 Bachelor of science student, Department of Food Science and Technology, Faculty of Food Industries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Background and Objectives: Sesame is one of the most important oilseeds in the world, ranking second after olive in terms of nutritional value. Considering the high volume of crude oil imports, along with the unique characteristics of sesame and its adaptability to the climatic conditions of most regions in the country, it can serve as a strategic oilseed for oil supply and reducing dependency on imports. Due to the difficulty and non-mechanized nature of sesame harvesting, new non-shattering cultivars have recently been introduced, which can play a significant role in increasing oil production. Therefore, the study of postharvest processes and operations, particularly seed drying, is of special importance. Sesame seeds, especially in regions with high relative humidity, must be dried immediately after harvest because of their high respiratory activity, and the resulting heat and moisture. Since the initial seed moisture, drying temperature, and air velocity are critical factors affecting the drying process and the oil quality of sesame seeds, this study aimed to determine the optimal drying conditions.
Materials and Methods: The sesame sample under study was the Oltan variety, which is resistant to shattering. It was cultivated under appropriate agricultural management at the Gorgan research station and harvested from late October, coinciding with the physiological maturity of the seeds. In this study, sesame seeds with an initial moisture content of 12–18% were dried at temperatures ranging from 50 to 70 °C and air velocities between 0.5 and 1.5 m/s. Optimal drying conditions were evaluated based on oil content, acidity, peroxide value, and oil color. Optimization was carried out using Response Surface Methodology (RSM) within a Central Composite Design (CCD) framework, employing the Design-Expert software. The relationships between variables and responses were identified using three-dimensional surface plots, where two variables were varied simultaneously while the third was held constant at its midpoint.
Results: Analysis of variance (ANOVA) revealed a significant effect (P < 0.01) of independent factors (temperature, moisture, and air velocity), their interactions and quadratic effects on acidity, peroxide index, color, and oil content in the second-order polynomial model. The significance of the coefficients in the different models was determined using analysis of variance for each response. The results also indicated that under optimal drying conditions, the oil's qualitative characteristics were achieved with minimum values for acidity (0.71%), peroxide index (1.08 meqO2/kg), and color (28.6), with a maximum oil content of 49.7%.
Conclusion: The optimal drying conditions for non-dehiscent sesame seeds were achieved at an initial moisture content of 14%, a drying temperature of 56°C, and an air velocity of 1 m/s.

کلیدواژه‌ها [English]

  • : Drying
  • Oil quality properties
  • Sesame
  • Response surface methodology
  1. Rajeswari, S., Thiruvengadam, V. & Ramaswamy, N. M. (2010). Production of interspecific hybrids between Sesamum alatumThonn and Sesamum indicum  through ovule culture and screening for phyllody disease resistance. South African Journal of Botany., 76 (2): 252-258.
  2. Nzikou, J. M., Leomá Matos, G., & Bouanga-Kalou's, N. (2010). Characterization of seeds and oil of sesame (Sesamum indicum L.) and the kinetics of degradation of the oil during heating. Research Journal of Applied Sciences, Engineering and Technology., 2 (3):227-232.
  3. Payghamzadeh, K., Faraji, A., Kiani, A., Rezaqi, M. H., & Sadegh-Nejad, H. (2022). Comprehensive Guide to Sesame Cultivation, Maintenance, and Harvesting in Golestan Province. Agricultural Extension and Education Deputy, Agricultural Education Publications, Agricultural Research, Education and Extension Organization. Publication No. 911. (in Persian).
  4. Agricultural Statistics Year book, (2023). Tehran, Ministry of Agricultural Jihad, Deputy of Planning and Economics, Information and Communication Technology Center. (in Persian).
  5. Mohammadzadeh, J., & Yaghbani, M. (2006). Study of Suitable Conditions for Rapeseed Drying in Golestan Region. Final Report of the Research Project, Agricultural Engineering Research Institute. No. 205. (in Persian).
  6. Rababah, T., Al-Udatt, M., Mahasneh, M., Odeh, A., & Feng, H. (2017). Effect of processing and storage at different temperature on the physicochemidal of Sesame seeds and tehin a. Bulgarian Journal of Agricultural Science., 23 (5): 851–859.
  7. . Nikmaram, S., & Tavakol Afshari, R. (2018). Investigating the effect of three types of packaging on the deterioration of primed and non-primed sesame seeds under different storage conditions. The 15th National Congress of Crop Sciences and Plant Breeding of Iran. (in Persian).
  8. Dairo, O.U., & Olayanju, T. M. A. (2012). Convective Thin-layer Drying Characteristics of Sesame Seed. International Journal of Engineering Research in Africa., 7: 55-62.
  9. Geetha, V., & Bhaskaran, M. (2020). Standardization of suitable drying methods for storing Groundnut and sesame seeds. International Journal of Current Microbiology and Applied Sciences., 9(5): 478-485.
  10. Bashiri,R., Ghavami, M., & Ansari, S. (2020). A comparative study of the effects of solar and hot air drying methods on the quality of sesame oil and its bioactive compounds. Food Science & Nutrition, 8(6), 2717-2725.
  11. Zare,D., Arablou, M., & Jafari, S. M. (2021). Impact of microwave drying on the lipid profile, bioactive compounds, and oxidative stability of sesame oil. LWT - Food Science and Technology, 147.
  12. AOAC, (2005). Official methods of analysis. 17 th Ed. Association of Official Analytical Chemists. VA. USA.
  13. Shantha, N. C., & Decker, E. A. (1994). Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. Journal of  AOAC International,. 77: 421–424.
  14. Pathk, P. K., &  Agrawal, Y. C. (2000). Effect of elevated drying temperaturd on rapeseed. American. Oil Chemistry Society., 68(8): 580-582.
  15. Myers, R H., & Montogomery, D. C. (2009). Response surface methodology: Process and product optimization using designed experiments. 3rd edition. John Wiley & Sons, Inc. New York.
  16. Koocheki, A., Taherian, A. R., Razavi, M. A., & Bostan, A. (2009). Response surface methodology for optimization of extraction yield, viscosity and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloids., 23: 2369-2379.
  17. Kumar, C.M., Appu Rao, A., & Singh, S. A. (2009). Effect of infrared heating on the formation of sesamol and quality of defatted flours from SESAMUM INDICUM Journal. Food Science., 74:105–111.
  18. Kanai, G., Kato, H., Umeda, N., & Okada, K. (2010). Drying condition and quality of rapeseed and sunflower. Journal Agricultural Reaearch Quarterly., 44(2): 173-178.
  19. Yoshida, H., & Kajimoto, G. (2014). Microwave heating a€ects com- position and oxidative stability of sesame (Sesamum indicum) oil. Journal of Food Science., 59: 613-616.
  20. Lee, S.W., Jeung, M.K., Park, M.H., Lee, S.Y., & Lee, J. (2010) Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chemistry., 118(3):681–5.
  21. Jai- Lee, H., Lee, S., Kim, H., & Hang, J.W. (2016). Thin-layer Drying Characteristics of Rapeseed. Journal of Biosystems Engineering., 41(3): 232-239.
  22. Ji, J., Liu Y., Shi L., Wang N., & Wang, X. (2019). Effect of roasting treatment on the chemical composition of sesame oil. LWT Food Science. Technol., 101:191–200.
  23. Gharby, S. Harhar, H. , & Charrouf, Z. (2017). Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. Journal of the Saudi Society of Agricultural Sciences., 16(2):105–111.
  24. Hashemi-Shahraki, M., Jafari, M., Mashkour, M., & Esmailzadeh, E. (2014). Optimization of Closed-Cycle Fluidized Bed Drying of Sesame Seeds Using Response Surface Methodology and Genetic Algorithms. International Journal of Food Engineering., doi 10.1515/ijfe-2012-0063.
  25. Khazaei, J., & Daneshmandi, S. (2007). Modeling of thin-layer drying kinetics of sesame seeds: mathematical and neural networks modeling. International Agrophysics., 21: 335-348.
  26. Tavakolipour, H. (2001). Food Drying: Principles and Methods. Ayizh Publications. Tehran. Pages: 10-41 (in Persian).
  27. Kachel-Jakubowska, M, &. Szpryngiel. M. (2008). Influence on drying condition on quality properties of rapeseed. International Agrophysics., 22: 327-331.