بهینه‌سازی استخراج ترکیبات زیست‌فعال از گلبرگ زعفران با استفاده از فراصوت و پیش‌تیمار پلاسمای سرد

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 دانش‌آموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

3 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

4 استادیار، بخش علوم شیمی، SSPC، بنیاد علوم ایرلند، مرکز تحقیقات داروسازی، موسسه برنال، دانشگاه لیمریک، کسلتروی، لیمریک، V94 T9PX، ایرلند

5 استاد، بخش غذا و تغذیه، دانشکده کشاورزی و علوم غذایی، کالج دانشگاهی دوبلین، بلفیلد، دوبلین، ایرلند

چکیده

سابقه و هدف: گلبرگ زعفران یکی از محصولات جانبی اصلی فرآوری زعفران می‌باشد که در مقیاس وسیعی تولید شده و علیرغم وجود ترکیبات موثره فراوان آن، دور ریخته شده و در تولید محصولات تجاری با ارزش افزوده از آن استفاده نشده است. از آنجایی که گلبرگ زعفران در مقایسه با کلاله زعفران منبع ارزان‌تری برای استخراج ترکیبات زیست‎فعال با اثرات بالینی موثر است، هدف از این پژوهش بررسی اثر پیش‌تیمار پلاسمای سرد و سپس استخراج عصاره گلبرگ زعفران به کمک امواج فراصوت بر ویژگی‌های عملکردی عصاره بود.
مواد و روش‌ها: در این پژوهش از روش سطح پاسخ برای طراحی آزمایش استفاده شده و 11 تیمار شامل نسبت گیاه به حلال (1، 5/3 و 6 درصد) و غلظت‌های مختلف اتانول در آب (0، 15 و 30 درصد) جهت استخراج استفاده شد و فراسنجه‌های میزان فنول کل، میزان فلاونوئید کل، میزان آنتوسیانین کل، پتانسیل مهار رادیکال‌های آزاد، راندمان استخراج و ماده خشک عصاره گلبرگ زعفران اندازه‌گیری شد. سپس بهینه‌سازی فرآیند استخراج به کمک نرم افزار دیزاین اکسپرت انجام شد.
یافته‌ها: نتایج نشان داد نسبت گیاه به حلال و درصد اتانول حلال تاثیر معنی‌داری بر ویژگی‌های عملکردی عصاره داشته و معادله‌ی واقعی تاثیر پارامترهای استخراج بر این ویژگی‌ها تعیین و گزارش شد. به شکل کلی با افزایش میزان گیاه در حلال میزان فنول کل و فلاونوئید کل عصاره کاهش پیدا کرده است. افزایش میزان اتانول موجود در حلال نیز تاثیر منفی بر میزان فنول و فلاونوئید کل عصاره داشته است. در مقابل، با افزایش میزان گیاه در حلال میزان آنتوسیانین کل عصاره افزایش پیدا کرده است. در ارتباط با تاثیر توان دوم غلظت اتانول، افزایش و به دنبال آن کاهش در مقدار آنتوسیانین کل مشاهده شد. مطالعه میزان خواص آنتی‌اکسیدانی از طریق فعالیت مهار رادیکال‌های آزاد نیز ابتدا کاهش و سپس روند افزایشی را با افزایش توان دوم تاثیر نسبت گیاه در حلال عصاره نشان داد. گرچه، افزایش غلظت اتانول همواره تاثیر مثبتی بر میزان خاصیت آنتی‌اکسیدانی عصاره داشت. براساس نتایج بهینه‌سازی استخراج با نرم افزار، بهترین نسبت گیاه به حلال و غلظت اتانول به ترتیب 00/1 درصد و 58/18 درصد بوده است. در شرایط بهینه، میزان فنول کل 52/265 میلی‌گرم در 100 گرم، میزان فلاونوئید کل 04/122 میلی‌گرم در 100گرم، میزان آنتوسیانین کل 99/33 میلی‌گرم در 100 گرم، میزان مهار رادیکال‌های آزاد 66/62 درصد، راندمان استخراج معادل 49/0 درصد و ماده خشک 67/0 درصد گزارش شد.
نتیجه‌گیری: نتایج این پژوهش نشان داد گلبرگ زعفران به عنوان یک محصول جانبی فرآوری زعفران می‌تواند تحت شرایط مناسب استخراج به کمک فراصوت در مدت زمان ایده‌آلی منجر به تولید عصاره‌ای با ارزش افزوده و خواص بیولوژیک بالا شود که قابلیت استفاده در فرمولاسیون‌های مواد غذایی فراسودمند، همچنین تولید مکمل‌های دارویی و محصولات آرایشی-بهداشتی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Extraction of Bioactive Compounds from Saffron Petals Using Ultrasound and Cold Plasma Pretreatment

نویسندگان [English]

  • Hadi Hashemi 1
  • yas kohansal 2
  • Mohammad -Taghi Golmakani 3
  • Armin Mirzapour-Kouhdasht 4
  • Marco Garcia-Vaquero 5
  • Fatemeh Ghiasi 1
1 Assistant Professor, Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
2 Master Graduate, Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
3 Professor, Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
4 Assistant Professor, Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
5 Professor, Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
چکیده [English]

Background and Objective: Saffron petals are one of the main by-products of saffron processing that are produced on a large scale and, despite the presence of abundant active compounds, are discarded and have not been used in the production of commercial value-added products. Since saffron petals are a cheaper source for extracting bioactive compounds with effective clinical effects compared to saffron stigma, this study aimed to investigate the effect of cold plasma pretreatment and then ultrasound-assisted extraction of saffron petal extract on the functional properties of the extract.
Materials and Methods: In this study, the response surface methodology was used to design the experiment and 11 treatments with two independent variable including petal to solvent ratio (1, 3.5 and 6%) and ethanol concentration (0, 15 and 30%) were investigated for extraction and the parameters of free radical scavenging rate, total phenol content, total flavonoid content, total anthocyanin content, extraction yield and dry matter of saffron petal extract were measured. Then, the extraction process was optimized using Design Expert software.
Results: The results showed that the petal to solvent ratio and the ethanol concentration had a significant effect on the functional properties of the extract, and the actual equation of the effect of extraction variables on these properties was determined and reported. In general, with increasing the petal to solvent ratio, the total phenol and total flavonoid contents in the extract decreased. Increasing the amount of ethanol in the solvent also had a negative effect on the total phenol and total flavonoid contents of the extract. In contrast, with increasing the petal to solvent ratio, the amount of total anthocyanin in the extract increased. Concerning the quadratic effect of the ethanol concentration, an increase followed by a decrease in the amount of total anthocyanin was observed. The study of the antioxidant properties through the free radical scavenging activity, also showed an initial decrease and then an increasing trend with increasing the quadratic effect of the petal to solvent ratio of the extract. However, increasing the ethanol concentration always had a positive effect on the antioxidant properties of the extract. Based on the results of software extraction optimization, the best petal to solvent ratio and ethanol concentration were 1.00% and 18.58%, respectively. Under optimal conditions, the total phenol content was 265.52 mg/100 g, the total flavonoid content was 122.04 mg/100 g, the total anthocyanin content was 33.99 mg/100 g, the free radical scavenging was 62.66%, the extraction yield was 0.49%, and the dry matter content was 0.67%.
Conclusion: The results of this study showed that saffron petals, as a by-product of saffron processing, can be extracted under appropriate ultrasound-assisted extraction conditions in an ideal time to produce an extract with added value and high biological properties that can be used in functional food formulations, as well as in the production of pharmaceutical supplements and cosmetic-health products.

کلیدواژه‌ها [English]

  • Saffron petal extract
  • Cold plasma
  • Ultrasound
  • Antioxidant properties
  1. Gahruie HH, Parastouei K, Mokhtarian M, Rostami H, Niakousari M, Mohsenpour Z. Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. Journal of Applied Research on Medicinal and Aromatic Plants. 2020;19:100264.
  2. Stelluti S, Caser M, Demasi S, Scariot V. Sustainable processing of floral bio-residues of saffron (Crocus sativus) for valuable biorefinery products. Plants. 2021;10(3):523.
  3. Khajeh-Hosseini M, Fallahpour F. Emerging innovation in saffron production. Saffron: Elsevier; 2020. p. 205-16.
  4. Serrano‐Díaz J, Sánchez AM, Maggi L, Martínez‐Tomé M, García‐Diz L, Murcia MA, et al. Increasing the applications of Crocus sativus flowers as natural antioxidants. Journal of Food 2012;77(11):C1162-C8.
  5. Moshiri E, Basti AA, Noorbala A-A, Jamshidi A-H, Abbasi SH, Akhondzadeh S. Crocus sativus(petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2006;13(9-10):607-11.
  6. Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC pharmacology. 2002;2:1-8.
  7. Gahruie HH, Niakousari M, Parastouei K, Mokhtarian M, Eş I, Mousavi Khaneghah A. Co‐encapsulation of vitamin D3 and saffron petals’ bioactive compounds in nanoemulsions: Effects of emulsifier and homogenizer types. Journal of Food Processing and Preservation.2020; 44(8):e14629.
  8. Marić M, Grassino AN, Zhu Z, Barba FJ, Brnčić M, Brnčić SR. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology. 2018;76:28-37.
  9. Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier A-S, et al. Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies. 2017;41:357-77.
  10. Hashemi SMB, Khaneghah AM, Koubaa M, Barba FJ, Abedi E, Niakousari M, et al. Extraction of essential oil from Aloysia citriodora Palau leaves using continuous and pulsed ultrasound: Kinetics, antioxidant activity and antimicrobial properties. Process Biochemistry. 2018;65:197-204.
  11. Khajehei F, Niakousari M, Seidi Damyeh M, Merkt N, Claupein W, Graeff-Hoenninger S. Impact of ohmic-assisted decoction on bioactive components extracted from yacon (Smallanthus sonchifolius Poepp.) leaves: Comparison with conventional decoction. Molecules. 2017;22(12):2043.
  12. Manouchehri R, Saharkhiz MJ, Karami A, Niakousari M. Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation. Sustainable Chemistry and Pharmacy. 2018;8:76-81.
  13. Cerdá-Bernad D, Baixinho JP, Fernández N, Frutos MJ. Evaluation of microwave-assisted extraction as a potential green technology for the isolation of bioactive compounds from saffron (Crocus sativus L.) floral by-products. Foods. 2022;11(15):2335.
  14. Faria G, Souza M, Oliveira J, Costa C, Collares M, Prentice C. Effect of ultrasound-assisted cold plasma pretreatment to obtain sea asparagus extract and its application in Italian salami. Food Research International. 2020;137:109435.
  15. Ahmadian S, Kenari RE, Amiri ZR, Sohbatzadeh F, Khodaparast MHH. Effect of ultrasound-assisted cold plasma pretreatment on cell wall polysaccharides distribution and extraction of phenolic compounds from hyssop (Hyssopus officinalis L.). International journal of biological macromolecules. 2023;233:123557.
  16. Moradi‐Sadr J, Ebadi MT, Ayyari M, Ghomi H. Optimization of ultrasonic bath and cold plasma pre‐treatments in the spearmint essential oil isolation process. Food Science & Nutrition. 2023;11(4):1904-15.
  17. Murakonda S, Dwivedi M. Combined use of pulse ultrasound–assisted extraction with atmospheric cold plasma: extraction and characterization of bioactive compounds from wood apple shell (Limonia acidissima). Biomass Conversion and Biorefinery. 2024;14(22):28233-51.
  18. Balegh SM, Saadati P, Safiaghdam M, Fakhari AA, Razavi R. Effect of cold atmospheric plasma pre-treatment and ultrasound-assisted extraction on bioactive compounds and chemical quality of rice bran oil. LWT. 2025:117451.
  19. Shahbazi H, Hashemi Gahruie H, Golmakani MT, Eskandari MH, Movahedi M. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Science & Nutrition. 2018;6(8):2568-77.
  20. Aghajanpoor N, Babakhani A, Tabarsa M. Optimization of the extraction of antioxidant compounds from brown algae Sargassum angustifolium in the Persian Gulf by response surface methodology (RSM). Aquaculture Sciences. 2020;8(1):43-58.
  21. Venkatesan T, Choi Y-W, Kim Y-K. Impact of different extraction solvents on phenolic content and antioxidant potential of Pinus densiflora bark extract. BioMed research international. 2019;2019(1):3520675.
  22. Tan QLP, Que AHN. Ultrasound-assisted extraction of phenolic compounds from Polyscias fruticosa (L.) Harms root. Ученые записки Казанского университета Серия Естественные науки. 2023;165(1):58-67.
  23. Biswas A, Dey S, Xiao A, Deng Y, Birhanie ZM, Roy R, et al. Ultrasound-assisted extraction (UAE) of antioxidant phenolics from Corchorus olitorius leaves: a response surface optimization. Chemical and Biological Technologies in Agriculture. 2023;10(1):64.
  24. Jaafar NF, Ramli ME, Salleh RM. Optimum extraction condition of Clitorea ternatea flower on antioxidant activities, total phenolic, total flavonoid and total anthocyanin contents. Tropical life sciences research. 2020;31(2):1.
  25. Bamba BSB, Shi J, Tranchant CC, Xue SJ, Forney CF, Lim L-T. Influence of extraction conditions on ultrasound-assisted recovery of bioactive phenolics from blueberry pomace and their antioxidant activity. Molecules. 2018;23(7):1685.
  26. Li Y, Lai P, Chen J, Shen H, Tang B, Wu L, et al. Extraction optimization of polyphenols, antioxidant and xanthine oxidase inhibitory activities from Prunus salicina Lindl. Food Science and Technology (Campinas). 2016;36(3):520-5.
  27. Ghitescu R-E, Volf I, Carausu C, Bühlmann A-M, Gilca IA, Popa VI. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrasonics sonochemistry. 2015;22:535-41.
  28. Elboughdiri N. Effect of time, solvent-solid ratio, ethanol concentration and temperature on extraction yield of phenolic compounds from olive leaves. Eng Technol Appl Sci Res. 2018;8(2):2805-8.
  29. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020;12(2):457.
  30. Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomedicine & Pharmacotherapy. 2019;109:1488-97.
  31. Rengarajan S, Melanathuru V, Govindasamy C, Chinnadurai V, Elsadek MF. Antioxidant activity of flavonoid compounds isolated from the petals of Hibiscus rosa sinensis. Journal of King Saud University-Science. 2020;32(3):2236-42.
  32. Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: A review. Current research in food science. 2021;4:200-14.
  33. Lin X, Wu L, Wang X, Yao L, Wang L. Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants. 2021;20:100284.
  34. Liao J, Guo Z, Yu G. Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells. Ultrasonics sonochemistry. 2021;76:105661.
  35. Amyrgialaki E, Makris DP, Mauromoustakos A, Kefalas P. Optimisation of the extraction of pomegranate (Punica granatum) husk phenolics using water/ethanol solvent systems and response surface methodology. Industrial Crops and Products. 2014;59:216-22.
  36. Şahin S, Şamlı R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics sonochemistry. 2013;20(1):595-602.
  37. Spigno G, De Faveri DM. Microwave-assisted extraction of tea phenols: A phenomenological study. Journal of food engineering. 2009;93(2):210-7.
  38. Ahmed T, Rana MR, Hossain MA, Ullah S, Suzauddula M. Optimization of ultrasound-assisted extraction using response surface methodology for total anthocyanin content, total phenolic content, and antioxidant activities of Roselle (Hibiscus sabdariffa L.) calyces and comparison with conventional Soxhlet extraction. Biomass Conversion and Biorefinery. 2024;14(22):28985-99.
  39. Woon GZB, Oh KS, Tee LH, editors. Identification and optimization of anthocyanin extracted from Dacryodes rostrata peel. AIP Conference Proceedings; 2020: AIP Publishing.
  40. Cui L, Zhang Z, Li H, Li N, Li X, Chen T. Optimization of ultrasound assisted extraction of phenolic compounds and anthocyanins from perilla leaves using response surface methodology. Food Science and Technology Research. 2017;23(4):535-43.
  41. Yue Q, Tian J, Dong L, Zhou L. Comparison of an ultrasound-assisted aqueous two-phase system extraction of anthocyanins from pomegranate pomaces by utilizing the artificial neural network–genetic algorithm and response surface methodology models. Foods. 2024;13(2):199.
  42. Che Sulaiman IS, Basri M, Fard Masoumi HR, Chee WJ, Ashari SE, Ismail M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal. 2017;11:1-11.
  43. Ozdemir M, Gungor V, Melikoglu M, Aydiner C. Solvent selection and effect of extraction conditions on ultrasound-assisted extraction of phenolic compounds from galangal (Alpinia officinarum). Journal of Applied Research on Medicinal and Aromatic Plants. 2024;38:100525.
  44. Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry. 2017;34:540-60.
  45. Zahari NAAR, Chong GH, Abdullah LC, Chua BL. Ultrasonic-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization. Processes. 2020;8(3):322.
  46. Rahaman A, Zeng X-A, Kumari A, Rafiq M, Siddeeg A, Manzoor MF, et al. Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrasonics sonochemistry. 2019;58:104643.
  47. Chen Y, Li M, Dharmasiri TSK, Song X, Liu F, Wang X. Novel ultrasonic-assisted vacuum drying technique for dehydrating garlic slices and predicting the quality properties by low field nuclear magnetic resonance. Food chemistry. 2020;306:125625.
  48. Mindaryani A, Sulton A, Setiawan FA, Rahayuningsih E. Natural dye extraction from Merbau (Intsia bijuga) sawdust: Optimization of solid–solvent ratio and temperature. Journal of the Korean Wood Science and Technology. 2023;51(6):481-92.
  49. Yazıcı SÖ. Optimization of all extraction process for phenolic compounds with maximum antioxidant activity from extract of Taraxacum assemanii by statistical strategies. Journal of Food Measurement and Characterization. 2021;15(5):4388-402.
  50. Jabbari N, Goli M, Shahi S. Optimization of bioactive compound extraction from saffron petals using ultrasound-assisted acidified ethanol solvent: Adding value to food waste. Foods. 2024;13(4):542.
  51. Rizkiyah DN, Putra NR, Idham Z, Che Yunus MA, Veza I, Harny I, et al. Optimization of red pigment anthocyanin recovery from Hibiscus sabdariffa by subcritical water extraction. Processes. 2022;10(12):2635.