مقایسه شبکه عصبی و طراحی فاکتوریل در بهینه‌سازی کاهش کدورت شیره توت قرمز

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

2 استادیار، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

چکیده

سابقه و هدف: در سال‌های اخیر، افزایش توجه به سلامت و کیفیت محصولات غذایی موجب شده است که فراوری مواد غذایی با به‌کارگیری روش‌های نوین، بسیار مهم تلقی شده و در رأس توجه قرار گیرد. یکی از چالش‌های مهم در این زمینه، کدورت شیره‌های میوه‌ای و به‌ویژه شیره توت قرمز است. یکی از راه‌های مؤثر در کاهش کدورت، استفاده از جاذب‌های طبیعی است. در این راستا، پوست موز به‌عنوان یک جاذب طبیعی معرفی می‌شود که می‌تواند به‌عنوان یک فاکتور مؤثر در فرایند کاهش کدورت شیره توت قرمز عمل کند. پوست موز با ترکیبات غنی، شامل پکتین و فیبرهای گیاهی، به‌عنوان یکی از منابع بالقوه برای جذب ذرات معلق و کدورت شناخته می‌شود.
مواد و روش‌ها: ماده هدف و اولیه موردمطالعه در تحقیق حاضر، شیره توت قرمز و پوست موز بوده که شیره توت تهیه گردیده در تحقیق حاضر دارای حدودا 78 درجه بریکس بود، با استفاده از آب مقطر بریکس آن کاهش داده شده و تا مقدار 15 رقیق‌سازی انجام گرفت. پوست موز پس از خشک کردن آن در دمای ملایم 45 سانتی‌گراد در آون آزمایشگاهی توسط الک‌های صنعتی به اندازه‌های یکسان 1 میلی‌متر تبدیل گردید. در نهایت با مقایسه روش‌های شبکه عصبی و فاکتوریل در کاهش کدورت شیره توت قرمز با استفاده از جاذب طبیعی پوست موز پرداخته شد. متغیرهای مستقل در نظر گرفته شده شامل دما، زمان و سرعت همزن بودند که هر کدام در 4 سطح مختلف بررسی گردیده و توسط روش فاکتوریل به طراحی آزمایش پرداخته شد. پاسخ‌های در نظر گرفته شده شامل درصد کاهش کدورت و درصد کاهش کارایی جاذب بودند.
یافته‌ها: نتایج نشان داد که بیشترین کاهش کدورت (22/47%) با کمترین کاهش کارایی جاذب طبیعی (65/57%) در دمای 30 سانتی‌گراد و مدت زمان فرایند جذب سطحی 3 ساعت با سرعت همزدن 300 دور در دقیقه حاصل خواهد شد. همچنین از شبکه عصبی برای پیش‌بینی دو متغیر وابسته در نظر گرفته شده به‌عنوان تابعی از متغیرهای مستقل استفاده گردید. نتایج مدلسازی شبکه عصبی دقت بالایی را به منظور پیش‌بینی متغیر هدف نشان داد، به طوریکه مقادیر متوسط خطای نسبی (MRE) برای دو متغیر وابسته درصد کاهش کدورت و درصد کاهش کارایی جاذب به ترتیب برابر با 06/2 و 90/0 درصد بود که در مقایسه با روش فاکتوریل که مقادیر آن برابر با 58/4 و 04/6 درصد بودند، باعث بهبود چشمگیر پیش‌بینی دو متغیر وابسته در نظر گرفته شده گردید.
نتیجه‌گیری: پوست موز به‌عنوان عامل جاذب طبیعی در کاهش کدورت شیره توت قرمز موثر عمل نمود، همچنین روش فاکتوریل به‌عنوان یکی از روش‌های طراحی آزمایش در جهت یافتن نقاط بهینه عملیاتی در فرایند کدورت‌زدایی به‌خوبی عمل کرد. در نهایت استفاده از شبکه عصبی جهت پیش‌بینی نتایج حاصل از پژوهش‌های آزمایشگاهی به‌خوبی توانایی مدل نمودن خروجی با درصد اطمینان بالا را داشته، به طوریکه در تحقیق حاضر در مقایسه با روش فاکتوریل در میان 2 پاسخ وابسته در نظر گرفته شده، به بهبود نتایج هر دو 2 متغیر وابسته کاهش کدورت و کاهش کارایی جاذب طبیعی منجر گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of neural network and factorial design in optimizing red mulberry juice turbidity reduction

نویسندگان [English]

  • Reza Beigzadeh 1
  • Omid Ahmadi 2
1 Associate Professor, Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
2 Assistant Professor, Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Background and Objectives: In recent years, increasing attention to the health and quality of food products has led to the importance of food processing using new methods. One of the significant challenges in this field is the turbidity of fruit juices, particularly red berry juice. An effective way to reduce turbidity is by using natural absorbents. In this regard, banana peel is introduced as a natural absorbent that can significantly contribute to the reduction of turbidity in red mulberry juice. Known for its rich compounds, including pectin and plant fibers, banana peel is recognized as a potential source for absorbing suspended particles and reducing turbidity.
Materials and Methods: The primary materials studied in this research are red berry juice and banana peel. The berry juice prepared for this research had a Brix value of approximately 78, which was reduced using distilled water through a series of 15 dilutions. The banana peel was dried at a mild temperature of 45 oC in a laboratory oven and then ground to a uniform size of 1 mm using industrial sieves. The study compared neural network and factorial methods for reducing the turbidity of red mulberry juice with the natural absorbent of banana peel. The independent variables considered included temperature, time, and stirrer speed, each investigated at four different levels, with the experimental design employing a factorial approach. The responses measured were the percentage reduction in turbidity and the percentage reduction in absorbent efficiency.
Results: The results showed that the maximum reduction in turbidity (47.22%) with the lowest reduction in the efficiency of the natural absorbent (57.65%) was achieved at a temperature of 30 oC, with surface absorption duration of 3 hours and a stirring speed of 300 rpm. Additionally, a neural network was utilized to predict the two dependent variables as functions of the independent variables. The neural network modeling demonstrated high accuracy in predicting the target variables, with mean relative error (MRE) values of 2.06% and 0.90% for the turbidity reduction percentage and the absorbent efficiency reduction percentage, respectively. In contrast, the factorial method yielded MRE values of 4.58% and 6.04%, thus significantly enhancing the prediction accuracy for the two dependent variables.
Conclusion: Banana peel, as a natural absorbent, was effective in reducing the turbidity of red mulberry juice. Furthermore, the factorial method proved to be effective as one of the experimental design approaches for identifying optimal operating conditions in the turbidity reduction process. The use of a neural network for predicting the results of laboratory research demonstrated a high degree of confidence in modeling outputs. In this study, the neural network provided improved predictions for the two dependent responses, leading to enhanced outcomes in both turbidity reduction and absorbent efficiency reduction.

کلیدواژه‌ها [English]

  • Optimization
  • Natural Adsorbent
  • Banana Peel
  • Neural Network
  • Red Berry Juice
  1. Fanzo, J., Bellows, A.L., Spiker, M.L., Thorne-Lyman, A.L., and Bloem, M.W. 2021. The importance of food systems and the environment for nutrition. The American Journal of Clinical Nutrition, 113(1): 7-16.
  2. Cosme, F., Pinto, T., Aires, A., Morais, M.C., Bacelar, E., Anjos, R., Ferreira-Cardoso, J., Oliveira, I., Vilela, A., and Gonçalves, B.J.F. 2022. Red fruits composition and their health benefits—A review. Foods, 11(5): 644.
  3. Dereli, B.O., Türkyılmaz, M., and Özkan, M. 2023. Clarification of pomegranate and strawberry juices: Effects of various clarification agents on turbidity, anthocyanins, colour, phenolics and antioxidant activity. Food Chemistry, 413: 135672.
  4. Shirvani, A., Mirzaaghaei, M., and Goli, S.A.H. 2023. Application of natural fining agents to clarify fruit juices. Comprehensive Reviews in Food Science Food Safety, 22(6): 4190-4216.
  5. Türkyılmaz, M., Hamzaoğlu, F., and Özkan, M. 2021. Effects of pasteurization and storage on turbidity and copigmentation in pomegranate juices clarified with various hydrocolloid combinations. Food Chemistry, 358: 129803.
  6. Rezaei, M., Alizadeh Khaledabad, M., Moghaddas Kia, E., and Ghasempour, Z. 2020. Optimization of grape juice deacidification using mixture of adsorbents: A case study of Pekmez. Food Science Nutrition, 8(6): 2864-2874.
  7. Azamzam, A.A., Rafatullah, M., Yahya, E.B., Ahmad, M.I., Lalung, J., Alam, M., and Siddiqui, M.R. 2022. Enhancing the efficiency of banana peel bio-coagulant in turbid and river water treatment applications. Water, 14(16): 2473.
  8. Karmakar, S. and De, S., Pectin removal and clarification of juices, in Separation of functional molecules in food by membrane technology. 2019, Elsevier. p. 155-194.
  9. Vu, H.T., Scarlett, C.J., and Vuong, Q.V. 2018. Phenolic compounds within banana peel and their potential uses: A review. Journal of functional foods, 40: 238-248.
  10. Akpomie, K.G. and Conradie, J. 2020. Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environmental Chemistry Letters, 18(4): 1085-1112.
  11. Topare, N.S. and Wadgaonkar, V.S. 2023. A review on application of low-cost adsorbents for heavy metals removal from wastewater. Materials Today: Proceedings, 77: 8-18.
  12. Ververi, M. and Goula, A.M. 2019. Pomegranate peel and orange juice by-product as new biosorbents of phenolic compounds from olive mill wastewaters. Chemical Engineering Processing-Process Intensification, 138: 86-96.
  13. Hu, J., Coombes, K.R., Morris, J.S., and Baggerly, K.A. 2005. The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Briefings in Functional Genomics, 3(4): 322-331.
  14. Ahmadi, O., Sayyar, Z., and Jafarizadeh Malmiri, H. 2023. Optimization of Processing Time, Temperature, and Stirring Rate to Synthesize the Ag Nanoparticles Using Oregano Extract. Iran. J. Chem. Chem. Eng., 42(10).
  15. Eshghi, M., Kamali-Shojaei, A., Vaghari, H., Najian, Y., Mohebian, Z., Ahmadi, O., and Jafarizadeh-Malmiri, H. 2021. Corylus avellana leaf extract-mediated green synthesis of antifungal silver nanoparticles using microwave irradiation and assessment of their properties. Green Processing Synthesis, 10(1): 606-613.
  16. Hanrahan, G. and Lu, K. 2006. Application of factorial and response surface methodology in modern experimental design and optimization. Critical reviews in analytical chemistry, 36(3-4): 141-151.
  17. De Oliveira, M., Lima, V.M., Yamashita, S.M.A., Alves, P.S., Portella, A.C.J.I.J.o.A.E.R., and Science. 2018. Experimental planning factorial: a brief review. 5(6): 264164.
  18. Abdolrasol, M.G., Hussain, S.S., Ustun, T.S., Sarker, M.R., Hannan, M.A., Mohamed, R., Ali, J.A., Mekhilef, S., and Milad, A. 2021. Artificial neural networks based optimization techniques: A review. Electronics, 10(21): 2689.
  19. Ahdno, H. and Jafarizadeh-Malmiri, H. 2015. Clarification of date syrup by activated carbon: investigation on kinetics, equilibrium isotherm, and thermodynamics of interactions. International Journal of Food Engineering, 11(5): 651-658.
  20. Hagen, M., Demuth, H., and Beale, M., Neural Network Design PWS Publishing Co. 1996, Boston.
  21. Hussain, M.A. 1999. Review of the applications of neural networks in chemical process control—simulation and online implementation. Artificial intelligence in engineering, 13(1): 55-68.
  22. Dennis Jr, J.E. and Schnabel, R.B., Numerical methods for unconstrained optimization and nonlinear equations. 1996: SIAM.
  23. Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial, 11(2): 431-441.
  24. Hagan, M.T. and Menhaj, M.B. 1994. Training feedforward networks with the Marquardt algorithm. IEEE transactions on Neural Networks, 5(6): 989-993.
  25. Haykin, S., Neural networks: a comprehensive foundation. 1998: Prentice Hall PTR.
  26. Beigzadeh, R., Rahimi, M.J.I.C.i.H., and Transfer, M. 2012. Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks. 39(8): 1279-1285.