بهینه سازی شاخص فعالیت و پایداری امولسیون پروتئین کینوآ

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد مهندسی علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

2 دانشیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

چکیده

سابقه و هدف: منابع پروتئینی سنتی مانند گوشت و لبنیات با چالش‌های زیست محیطی و کارایی منابع مواجه هستند. از این رو، توجه به منابع پروتئینی جایگزین که بتوانند نیازهای تغذیه‌ای را برآورده کنند و در عین حال دوست‌دار محیط زیست باشند، اهمیت ویژه‌ای یافته‌است. کینوآ (Chenopodium quinoa Willd)، یک شبه غلات بومی منطقه آندیان، به دلیل ارزش غذایی بالا و فواید سلامتی متعدد، توجه بسیاری را به خود جلب کرده‌است. هدف از این تحقیق توسعه و بهینه سازی روشی برای استخراج پروتئین کینوا با توجه به خواص عملکردی آن از نظر فعالیت امولسیونی و پایداری بود.
مواد و روش‌ها: آرد کینوآ از دانه‌های کینوا تهیه و چربی‌زدایی آن با-n هگزان انجام شد، سوسپانسیونی از آرد و آب مقطر تهیه و pH با محلول هیدروکسید سدیم مطابق جدول پیشنهادی نرم‌افزار مورد استفاده برای روش سطح پاسخ تنظیم شد. سوسپانسیون سانتریفیوژ شد و سپس محلول رویی با محلول اسید کلریدریک به pH ایزوالکتریک رسید و سانتریفیوژ دوم انجام شد، سپس شستشوی رسوبات، خنثی کردن آن‌ها و خشک کردن رسوبات در خشک کن انجمادی و اندازه‌گیری شاخص فعالیت امولسیون و پایداری امولسیون انجام شد. استخراج پروتئین برای ارزیابی خواص عملکردی کینوا با استفاده از روش سطح پاسخRSM) ) انجام شد. متغیرهای مستقل شامل pH ایزوالکتریک (4-5 دقیقه)، دمای سانتریفیوژ (3-5 درجه سانتیگراد) و pH قلیایی (9-12) بودند. برای تحلیل داده ها از نرم افزار دیزاین اکسپرت و طرح Box Benchen با 6 تکرار در نقطه مرکزی در سطح احتمال 5 درصد استفاده شد. آزمون t-student برای مقایسه شرایط پیش بینی شده و آزمایش شده نقطه بهینه استفاده شد.
یافته‌ها: نتایج آنالیز واریانس برای بررسی متغیر وابسته شاخص فعالیت امولسیونی نشان داد که مدل درجه دوم معنی‌دار است(0001/0p<). اثر متقابل دما×pH ایزوالکتریک، pH قلیایی× pH ایزوالکتریک و pH قلیایی × دما معنی‌دار بود(0001/0p<). تجزیه و تحلیل آماری نشان داد که مدل درجه دوم برای متغیر وابسته پایداری امولسیون معنی‌دار است(0001/0p<). اثر متقابل دما×pH ایزوالکتریک، pH قلیایی× pH ایزوالکتریک و pH قلیایی × دما معنی‌دار بود(05/0p<). نتایج نشان داد که می‌توان از مدل درجه دوم برای پیش بینی متغیرهای وابسته استفاده کرد. تغییرات pH ایزوالکتریک بر شاخص فعالیت امولسیون و پایداری آن تأثیر معنی‌داری داشت(05/0p<). تغییرات دما بر شاخص فعالیت امولسیونی و پایداری آن تأثیر معنی‌داری داشت(05/0p<). تغییرات در pH قلیایی تأثیر معنی‌داری بر شاخص فعالیت امولسیونی و پایداری آن داشت(05/0p<). برای بهینه سازی عددی، مقادیر متغیرهای مستقل در محدوده تعریف شده و متغیرهای وابسته در حداکثر حالت قرار گرفتند.
نتیجه‌گیری: تیمار بهینه پیشنهادی شامل pH قلیایی 9، pH ایزوالکتریک 5 و دمای 064/4 درجه سانتی‌گراد بود. آزمون‌های انجام‌شده در سه تکرار انجام شد. آزمون T-student تفاوت معنی‌داری را بین شرایط پیش‌بینی شده و آزمایشی نشان نداد(05/0p>). نتایج نشان داد که پروتئین کینوا می‌تواند به عنوان امولسیفایر در صنایع غذایی استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Quinoa Protein Emulsion Activity Index and Stability

نویسندگان [English]

  • Niloufar Hamedanian 1
  • Nafiseh Zamindar 2
1 Master Student, Department of Food Science and Technology, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
2 Associate Professor, Department of Food Science and Technology, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده [English]

Background and objectives: traditional protein sources such as meat and dairy are facing environmental and resource efficiency challenges. Therefore, paying attention to alternative protein sources that can meet nutritional needs and at the same time be environmentally friendly has been found particularly important. Quinoa (Chenopodium quinoa Willd), a pseudocereal native to the Andean region, has attracted much attention due to its high nutritional value and numerous health benefits. The aim of this research was developing and optimizing a method for extracting quinoa protein regarding its functional properties in terms of emulsion activity and stability.
Materials and Methods: Quinoa flour was prepared from quinoa seeds and defatted with n-hexane, a suspension of flour and distilled water was prepared and pH was adjusted with sodium hydroxide solution according to the table suggested by the software used for the response surface method. The suspension was centrifuged and then the supernatant solution reached isoelectric pH with hydrochloric acid solution and the second centrifugation was performed, then the sediments were washed, neutralized and dried in a freeze dryer and the emulsion activity index and emulsion stability were measured. Protein extraction for evaluation of functional properties of quinoa was done using response surface method (RSM). The independent variables included isoelectric pH (4-5 minutes), centrifuge temperature (3-5 degrees Celsius) and alkaline pH (9-12). For data analysis design expert software and Box Benchen design with 6 replication at central point at probability of 5% was used. The t-student test was used to compare predicted and experimented conditions of optimal point.
Results: The results of analysis of variance to investigate the dependent variable of emulsion activity index showed that the quadratic model was significant (p < 0.0001). The interaction of temperature × isoelectric pH, alkaline pH × isoelectric pH, and alkaline pH × temperature were significant (p < 0.0001). Statistical analysis showed the dependent variable of emulsion stability shows that the quadratic model was significant (p < 0.0001). The interaction effect of temperature × isoelectric pH, alkaline pH × isoelectric pH, and alkaline pH × temperature were significant (p < 0.05). The results showed that the quadratic model could be used to predict the dependent variables. Isoelectric pH changes had a significant effect on emulsion activity index and its stability (p < 0.05). Temperature changes had a significant effect on emulsion activity index and its stability (p < 0.05). Changes in the alkaline pH had a significant effect on the emulsion activity index and its stability (p < 0.05). For numerical optimization, the values of the independent variables were within the defined range and the dependent variables were set to the maximum state.
Conclusion: The proposed treatment included alkaline pH of 9.00, isoelectric pH of 5 and temperature of 4.064 degrees Celsius. The experimented tests were performed in three repetitions. T-student test showed no significant difference between predicted and experimented conditions (p > 0.05). The results showed that quinoa protein could be used as an emulsifier in the food industry.

کلیدواژه‌ها [English]

  • Emulsion stability
  • Quinoa Protein
  • Response surface method
  • Emulsion Activity Index
Smith, R., Clegg, M., & Methven, L. (2024). Review of protein intake and suitability of foods for protein-fortification in older adults in the UK. Critical Reviews in Food Science and Nutrition, 64(12), 3971-3988.
Parodi, A., Leip, A., De Boer, I., Slegers, P., Ziegler, F., Temme, E. H., Herrero, M., Tuomisto, H., Valin, H., & Van Middelaar, C. (2018). The potential of future foods for sustainable and healthy diets. Nature Sustainability, 1(12), 782-789.
Takefuji, Y. (2021). Sustainable protein alternatives. Trends in Food Science & Technology, 107, 429-431.
García-Parra, M., Zurita-Silva, A., Stechauner-Rohringer, R., Roa-Acosta, D., & Jacobsen, S.-E. (2020). Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chilean journal of agricultural research, 80(2), 290-302.
Craine, E. B., & Murphy, K. M. (2020). Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State. Frontiers in nutrition, 7, 126.
Plotnikoff, G.A., Dobberstein, L., & Raatz, S. (2023). Nutritional Assessment of the Symptomatic Patient on a Plant-Based Diet: Seven Key Questions. Nutrients, 15(6), 1387.
Kim, T.-K., Lee, M. H., Yong, H. I., Jang, H. W., Jung, S., & Choi, Y.-S. (2021). Impacts of fat types and myofibrillar protein on the rheological properties and thermal stability of meat emulsion systems. Food Chemistry, 346, 128930.
Patel, A. S., Lakshmibalasubramaniam, S., Nayak, B., & Camire, M. E. (2022). Lauric acid adsorbed cellulose nanocrystals retained the physical stability of oil-in-water Pickering emulsion during different dilutions, pH, and storage periods. Food Hydrocolloids, 124, 107139.
Keshani, M., Zamindar, N., & Hajian, R. (2020). Effect of Immersion Ohmic Heating on Thawing Rate and Properties of Frozen Tuna Fish. Iranian Food Science and Technology Research Journal, 16(5), 621-628.
Xu, B., Liu, C., Sun, H., Wang, X., & Huang, F. (2020). Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers. Colloids and Surfaces B: Biointerfaces, 187, 110646.
Ji, C., & Luo, Y. (2023). Plant protein-based high internal phase Pickering emulsions: Functional properties and potential food applications. Journal of Agriculture and Food Research, 12, 100604.
Barati, F., Zamindar, N., & Rafiaei, S. (2024). The Study of Kinetics of Polyphenol Oxidase Inactivation in Carrot Juice by Ohmic Heating. Iranian journal of food science and industry, 21(153).
Kidane, S. W. (2021). Application of response surface methodology in food process modeling and optimization. In Response surface methodology in engineering science. IntechOpen.
Patterson, T. A., Parton, A., Langrock, R., Blackwell, P. G., Thomas, L., & King, R. (2017). Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges. AStA Advances in Statistical Analysis, 101, 399-438.
Carley, K. M., Kamneva, N. Y., & Reminga, J. (2004). Response surface methodology (pp. 1-26). Carnegie Mellon University, School of Computer Science, Institute for Software Research International.‏
Wilson, N., Cleghorn, C. L., Cobiac, L. J., Mizdrak, A., & Nghiem, N. (2019). Achieving healthy and sustainable diets: a review of the results of recent mathematical optimization studies. Advances in Nutrition, 10, S389-S403.
Lee, S. Y., In, J., Chung, M.-S., & Min, S. C. (2021). Microbial decontamination of particulate food using a pilot-scale atmospheric plasma jet treatment system. Journal of Food Engineering, 294, 110436.
Lee, M. H., Lee, I. Y., Chun, Y. G., & Kim, B.-K. (2021). Formulation and characterization of β-caryophellene-loaded lipid nanocarriers with different carrier lipids for food processing applications. LWT, 149, 111805.
Liu, C., Pei, R., & Heinonen, M. (2022). Faba bean protein: A promising plant-based emulsifier for improving physical and oxidative stabilities of oil-in-water emulsions. Food Chemistry, 369, 130879.
Wang, S., Yang, J., Shao, G., Qu, D., Zhao, H., Yang, L., Zhu, L., He, Y., Liu, H., & Zhu, D. (2020). Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion: Effect of polysaccharides concentration on the storage stability and interfacial rheological properties. Food Hydrocolloids, 101, 105490.
Chen, J., Li, X., Cao, C., Kong, B., Wang, H., Zhang, H., & Liu, Q. (2022). Effects of different pH conditions on interfacial composition and protein-lipid co-oxidation of whey protein isolate-stabilised O/W emulsions. Food Hydrocolloids, 131, 107752.
Huang, L., Zhao, X., Zhao, Q., Zhou, F., & Zhao, M. (2024). Recent Progress, Application, and Quality Evaluation of Plant-Based Double Emulsions in Low-Fat Foods. Food and Bioprocess Technology, 1-21.
Sharma, A., Singh, Y., Singh, G. K., Habte, A. T., & Singh, N. (2019). RETRACTED: Production of polanga methyl esters and optimization of diesel engine parameters through response surface methodology approach. In: Elsevier.
Xia, Q., Green, B. D., Zhu, Z., Li, Y., Gharibzahedi, S. M. T., Roohinejad, S., & Barba, F. J. (2019). Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice (Oryza sativa L.)–opportunities for enhancing food quality and health attributes. Critical Reviews in Food Science and Nutrition, 59(20), 3349-3370.
Lonnie, M., Laurie, I., Myers, M., Horgan, G., Russell, W. R., & Johnstone, A. M. (2020). Exploring health-promoting attributes of plant proteins as a functional ingredient for the food sector: a systematic review of human interventional studies. Nutrients, 12(8), 2291.
Chen, Kai, Min Zhang, Arun S. Mujumdar, and Haixiang Wang. 2021. 'Quinoa protein-gum Arabic complex coacervates as a novel carrier for eugenol: Preparation, characterization and application for minced pork preservation', Food Hydrocolloids, 120: 106915.
Daliri, Hesam, Raman Ahmadi, Akram Pezeshki, Hamed Hamishehkar, Maryam Mohammadi, Hossein Beyrami, Maryam Khakbaz Heshmati, and Marjan Ghorbani. 2021. 'Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties', LWT, 150: 111853.
Krstonošić, V. S., Kalić, M. D., Dapčević-Hadnađev, T. R., Lončarević, I. S., & Hadnađev, M. S. (2020). Physico-chemical characterization of protein stabilized oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125045.‏
Karaca, A. C., Low, N., & Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food research international, 44(9), 2742-2750.‏
Kumar, M., Tomar, M., Potkule, J., Punia, S., Dhakane-Lad, J., Singh, S., ... & Kennedy, J. F. (2022). Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloids, 123, 106986.‏
Ghorbani, Mohammad, Mohammadi, Adele, Mojerabi, & Seyed Daniyal. (2021). Investigating the functional characteristics of co-precipitated proteins extracted from wastes of pomegranate and grape seeds. New Technologies in Food Industry, 8(3), 337-348(In Persian).