بررسی عوامل موثر بر پایداری امولسیون‌های پایدار شده با نانوذرات و کاربرد آنها در صنایع غذایی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار، گروه علوم و صنایع غذایی، دانشگاه جیرفت، کرمان، ایران

2 دانش‌آموخته دکتری علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

3 استاد، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

چکیده

امولسیون‌های پایدارشده با نانوذرات جامد آبدوست و آبگریز، که به آن‌ها امولسیون‌های پیکرینگ نیز گفته می‌شود، در سال‌های اخیر، به علت پایداری و سازگاری بیشتر آن‌ها با محیط زیست در مقایسه با امولسیون‌های معمولی، مورد توجه محققین قرار گرفته‌اند. در این نوع سامانه‌های امولسیونی، ذرات کلوئیدی به‌طور برگشت‌ناپذیری، در سطح مشترک آب و روغن جذب و با ایجاد مانع فیزیکی مانع از برخورد و تماس گویچه‌های فاز پراکنده و در نتیجه افزایش قابل‌توجه پایداری فیزیکوشیمیایی آن‌ها می‌گردد. کارایی پایدارکنندگی ذرات جامد عمدتاً به قابلیت ترشوندگی و مورفولوژی آن‌ها بستگی دارد. عوامل مهم دیگری مانند ماهیت روغن، غلظت ذرات، کسر حجمی فازهای تشکیل‌دهنده و ترتیب افزودن مواد اولیه طی آماده‌سازی امولسیون بر پایداری امولسیون‌های پیکرینگ حاصل موثر می‌باشند. ذرات کلوئیدی مورد استفاده در تولید و پایدارسازی امولسیون‌های پیکرینگ از منابع مختلف غیرآلی و آلی بدست می‌آیند. این ذرات بسته به ماهیت و روش تولید طیف وسیعی از شکل و اندازه را شامل می‌شوند. به دلیل نگرانی در مورد اثرات نامطلوب ذرات غیرخوراکی بر سلامت و افزایش آگاهی و علاقه عمومی به محصولات با منشاء طبیعی، در سال‌های اخیر، توسعه امولسیون‌های پیکرینگ پایدارشده با ذرات خوراکی اهمیت قابل‌توجهی یافته است. طیف وسیعی از پلیمرهای طبیعی می‌توانند به منظور تهیه نانوذرات آلی مورد استفاده قرار گیرند. در این رابطه، پلیمرهای طبیعی به دلیل ویژگی‌هایی همچون زیست تخریب‌پذیری و زیست سازگاری به‌طور ویژه‌ای مورد توجه قرار گرفته‌اند. از این رو در سال های اخیر تلاش محققان به سوی استفاده از این ذرات جهت پایداری امولسیون‌های پیکرینگ مورد استفاده در صنعت غذا رونق بیشتری یافته است. از جمله کاربردهای امولسیون‌های پیکرینگ در صنعت غذا می‌توان به استفاده از امولسیون‌های پیکرینگ برای توسعه فناوری تولید اولئوژل بر پایه امولسیون و متعاقباً تبدیل روغن مایع با ویسکوزیته پایین به ژلی نرم یا امولسیون با فاز داخلی بالا و بکارگیری آن به‌عنوان جایگزین چربی و همچنین توسعه بسته‌بندی‌های فعال با وارد ساختن ترکیبات زیست‌فعال مانند ترکیبات ضداکسایشی یا ضد میکروب در فرمولاسیون فیلم‌های بسته‌بندی و رهایش کنترل شده آن‌ها طی دوره نگهداری محصولات غذایی اشاره کرد. همچنین، این سامانه‌های امولسیونی یک استراتژی امیدوارکننده برای توسعه محصولات عملگرا می‌باشند؛ زیرا علاوه بر فازهای آب و روغن امولسیون، ذرات پایدارکننده نیز می‌توانند به عنوان حامل ترکیبات زیست فعال عمل کنند. این نوع امولسیون‌ها با پایداری فیزیکوشیمیایی بالا، می‌توانند به عنوان یک سامانه ریزپوشانی برای ترکیبات زیست‌فعال به کار رفته و همچنین پایداری و قابلیت زیست دسترس‌پذیری آن‌ها را بهبود بخشند. این مقاله مروی به تشریح مکانیسم پایداری، عوامل مؤثر بر پایداری امولسیون‌های پیکرینگ و نانوذرات مورد استفاده به عنوان پایدار کننده امولسیون‌های پیکرینگ می‌پردازد. علاوه بر این، به کاربرد امولسیون‌های پیکرینگ در صنعت غذا نیز اشاره شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating factors affecting the stability of emulsions stabilized by nanoparticles and their application in food industries

نویسندگان [English]

  • Fatemeh Heidari Dalfard 1
  • Sedighe Tavasoli 2
  • Seid Mahdi Jafari 3
1 Assistant Professor, Department of Food Science and Technology, University of Jiroft, Kerman, Iran
2 Ph.D Graduate, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Professore, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

In recent years, there has been a growing interest among researchers in emulsions stabilized by hydrophilic and hydrophobic solid nanoparticles, known as Pickering emulsions, due to their enhanced stability and eco-friendly nature compared to traditional emulsions. In this type of emulsion, colloidal particles attach firmly to the oil/water interface, forming a protective barrier that prevents emulsion droplets from colliding and enhances their stability. The effectiveness of these solid particles in stabilizing emulsions depends on their wettability and shape. Additionally, factors like the type of oil, particle concentration, proportion of each phase, and the sequence in which ingredients are added during emulsion preparation all play a role in determining the stability of the resulting Pickering emulsions. Colloidal particles utilized in stabilizing Pickering emulsions can be derived from different inorganic and organic sources. These particles come in various shapes and sizes based on their origin and how they are produced. Recently, there has been a growing concern about the health impacts of non-edible particles and a rising public interest in natural products. To address this, there has been a significant effort towards developing Pickering emulsions that are stabilized with edible particles. Organic nanoparticles can be prepared using a wide range of natural polymers like polysaccharids and proteins, which have garnered special attention for their biodegradable and biocompatible properties. This has led researchers to focus more on using these particles to stabilize Pickering emulsions in the food industry. In food industry applications, Pickering emulsions can be utilized to create oleogels from the emulsion systems. This allows the transformation of liquid oils with low viscosity into a gel or structured emulsion with a high internal phase, serving as a solid fat substitute. Additionally, they can be used for developing active packaging by incorporating bioactive compounds like antioxidants or antimicrobials into packaging films for a controlled release during the food storage period. Moreover, these emulsion systems show great promise for developing functional products. This is because, along with water and oil components of the emulsion, the stabilizing particles can also serve as carriers for hydrophilic or hydrophobic bioactive compounds. Such emulsions, characterized by high physicochemical stability, can function effectively as an encapsulation system for bioactive compounds, enhancing both their stability and bioavailability. This review aims to investigate the stabilization mechanism, factors influencing the stability of Pickering emulsions, and the nanoparticles utilized as stabilizers. It also explores the applications of Pickering emulsions in the food industry.

کلیدواژه‌ها [English]

  • Pickering emulsion
  • Nanoparticle
  • Stability mechanism
  • Food application
McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1498726690.
Nour, A. H. (2018). Emulsion types, stability mechanisms and rheology: A review. International Journal of Innovative Research and Scientific Studies (IJIRSS), 1(1).
Ravera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2021). Emulsification and emulsion stability: The role of the interfacial properties. Advances in Colloid and Interface Science288, 102344.
Sarathchandraprakash, N. K., Mahendra, C., Prashanth, S. J., Manral, K., Babu, U. V., & Gowda, D. V. S. (2013). Emulsions and emulsifiers. The Asian Journal of Experimental Chemistry8, 30-45.
McClements, D. J. (2012). Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid & Interface Science, 17(5), 235-245.
Heidari Dalfard, F., Ziaiifar, A. M., Jafari, S. M., & Anton, N. (2022). Investigating the effect of nanoparticle concentration and oil content on the physical stability of Pickering emulsion stabilized by chitosan nanoparticles. Innovative Food Technologies, 9(2), 167-179.
Heidari, F., Jafari, S. M., Ziaiifar, A. M., & Anton, N. (2023). Surface modification of silica nanoparticles by chitosan for stabilization of water-in-oil Pickering emulsions. Carbohydrate Polymer Technologies and Applications, 6, 100381.
Matos, M., Laca, A., Rea, F., Iglesias, O., Rayner, M., & Gutiérrez, G. (2018). O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation. Journal of Food Engineering, 222, 207-217.
Jafari, S. M., Doost, A. S., Nasrabadi, M. N., Boostani, S., & Van der Meeren, P. (2020). Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends in Food Science & Technology, 98, 117-128.
Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117.
Tan, C., & McClements, D. J. (2021). Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods10(4), 812.
Ortiz, D. G., Pochat-Bohatier, C., Cambedouzou, J., Bechelany, M., & Miele, P. (2020). Current trends in Pickering emulsions: Particle morphology and applications. Engineering, 6(4), 468-482.
Linke, C., & Drusch, S. (2018). Pickering emulsions in foods-opportunities and limitations. Critical Reviews in Food Science and Nutrition, 58(12), 1971-1985.
Wei, Z., & Huang, Q. (2019). Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocolloids, 93, 68-77.
Chen, X., McClements, D. J., Wang, J., Zou, L., Deng, S., Liu, W., Yan, C., Zhu, Y., Cheng, C., & Liu, C. (2018). Coencapsulation of (−)-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. Journal of Agricultural and Food Chemistry, 66(14), 3691-3699.
Baraki, S.Y., Jiang, Y., Li, X., Debeli, D.K., Wang, B., Feng, X., Mao, Z., & Sui, X. (2021). Stable sunflower oil oleogel from oil/water pickering emulsion with regenerated chitin. LWT, 146, 111483.
Dickinson, E. (2017). Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids, 68, 219–231.
Han, Y., Zhu, L., Karrar, E., Qi, X., Zhang, H., & Wu, G. (2023). Pickering foams stabilized by protein-based particles: A review of characterization, stabilization, and application. Trends in Food Science and Technology, 133, 148-159.
Heidari, F., Jafari, S. M., Ziaiifar, A. M., & Anton, N. (2022). Preparation of Pickering emulsions stabilized by modified silica nanoparticles via the Taguchi approach. Pharmaceutics, 14(8), 1561.
Binks, B. P., & Clint, J. H. (2002). Solid wettability from surface energy components: relevance to Pickering emulsions. Langmuir, 18(4), 1270-1273.
Gavrielatos, I., Dabirian, R., Mohan, R. S., & Shoham, O. (2019). Oil/water emulsions stabilized by nanoparticles of different wettabilities. Journal of Fluids Engineering, 141(2), 021301.
Zhang, Y., Bao, Y., Zhang, W., & Xiang, R. (2023). Factors that affect Pickering emulsions stabilized by mesoporous hollow silica microspheres. Journal of Colloid and Interface Science, 633, 1012-1021.
Li, F., Li, X., Huang, K., Luo, Y., & Mei, X. (2021). Preparation and characterization of pickering emulsion stabilized by hordein-chitosan complex particles. Journal of Food Engineering, 292, 110275.
Xia, T., Xue, C., & Wei, Z. (2021). Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends in Food Science and Technology, 107, 1-15.
Li, S., Jiao, B., Meng, S., Fu, W., Faisal, S., Li, X., ... & Wang, Q. (2022). Edible mayonnaise-like Pickering emulsion stabilized by pea protein isolate microgels: Effect of food ingredients in commercial mayonnaise recipe. Food Chemistry, 376, 131866.
Gao, Z., Zhao, J., Huang, Y., Yao, X., Zhang, K., Fang, Y., ... & Yang, H. (2017). Edible Pickering emulsion stabilized by protein fibrils. Part 1: Effects of pH and fibrils concentration. LWT-Food Science and Technology, 76, 1-8.
Ortiz, D. G., Pochat-Bohatier, C., Cambedouzou, J., Bechelany, M., & Miele, P. (2020). Current trends in Pickering emulsions: Particle morphology and applications. Engineering, 6(4), 468-482.
Dong, Y., Wei, Z., Wang, Y., Tang, Q., Xue, C., & Huang, Q. (2022). Oleogel-based Pickering emulsions stabilized by ovotransferrin–carboxymethyl chitosan nanoparticles for delivery of curcumin. LWT, 157, 113121.
Dammak, I., & do Amaral Sobral, P. J. (2018). Formulation optimization of lecithin-enhanced pickering emulsions stabilized by chitosan nanoparticles for hesperidin encapsulation. Journal of Food Engineering, 229, 2-11.
Dai, L., Zhan, X., Wei, Y., Sun, C., Mao, L., McClements, D. J., & Gao, Y. (2018). Composite zein-propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers. Food Hydrocolloids, 85, 281-290.
Ma, L., Zou, L., McClements, D. J., & Liu, W. (2020). One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocolloids, 100, 105381.
Xu, T., Yang, J., Hua, S., Hong, Y., Gu, Z., Cheng, L., Li, Z., & Li, C. (2020). Characteristics of starch-based Pickering emulsions from the interface perspective. Trends in Food Science & Technology, 105, 334-346.
Shao, P., Zhang, H., Niu, B., & Jin, W. (2018). Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols. International Journal of Biological Macromolecules, 118, 2032-2039.
Eslami, P., Davarpanah, L., & Vahabzadeh, F. (2017). Encapsulating role of β-cyclodextrin in formation of pickering water-in-oil-in-water (W1/O/W2) double emulsions containing Lactobacillus dellbrueckii. Food Hydrocolloids, 64, 133-148.
Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids, 77, 17-29.
Zhao, H., Yang, Y., Chen, Y., Li, J., Wang, L., & Li, C. (2022). A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application. Chemical Engineering Science, 248, 117085.
Zou, Y., van Baalen, C., Yang, X., & Scholten, E. (2018). Tuning hydrophobicity of zein nanoparticles to control rheological behavior of Pickering emulsions. Food Hydrocolloids, 80, 130–140.
Ribeiro, E. F., de Barros-Alexandrino, T. T., Assis, O. B. G., Junior, A. C., Quiles, A., Hernando, I., & Nicoletti, V. R. (2020). Chitosan and crosslinked chitosan nanoparticles: Synthesis, characterization and their role as Pickering emulsifiers. Carbohydrate Polymers250, 116878.
Wei, Z., Cheng, Y., Zhu, J., & Huang, Q. (2019). Genipin-crosslinked ovotransferrin particle-stabilized Pickering emulsions as delivery vehicles for hesperidin. Food Hydrocolloids, 94, 561-573.
(37) Winuprasith, T., Khomein, P., Mitbumrung, W., Suphantharika, M., Nitithamyong, A., & McClements, D. J. (2018). Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocolloids, 83, 153-164.
(38) Zamani, S., Malchione, N., Selig, M. J., & Abbaspourrad, A. (2018). Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels. Food and Function, 9(2), 982-990.
Feng, X., Dai, H., Ma, L., Yu, Y., Tang, M., Li, Y., et al. (2019). Food-grade gelatin nanoparticles: Preparation, characterization, and preliminary application for stabilizing pickering emulsions. Foods, 8, 479.
Wei, Z., Cheng, J., & Huang, Q. (2019). Food-grade Pickering emulsions stabilized by ovotransferrin fibrils. Food Hydrocolloids, 94, 592–602.
Wei, Z., Cheng, Y., & Huang, Q. (2019b). Heteroprotein complex formation of ovotransferrin and lysozyme: Fabrication of food-grade particles to stabilize Pickering emulsions. Food Hydrocolloids, 96, 190–200.
Wang, Z., Zhang, N., Chen, C., He, R., & Ju, X. (2020). Rapeseed protein nanogels as novel Pickering stabilizers for oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 68, 3607–3614.
Chen, S., & Zhang, L. (2019). Casein nanogels as effective stabilizers for Pickering high internal phase emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 113662.
Wen, J., Jiang, L., & Sui, X. (2023). Plant protein and animal protein‐based Pickering emulsion: A review of preparation and modification methods. Journal of the American Oil Chemists' Society.
Araiza-Calahorra, A., & Sarkar, A. (2019). Pickering emulsion stabilized by protein nanogel particles for delivery of curcumin: effects of pH and ionic strength on curcumin retention. Food Structure, 21, 100113.
Lv, P., Wang, D., Dai, L., Wu, X., Gao, Y., & Yuan, F. (2020). Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: characterization and encapsulation of curcumin. Food Research International, 132, 109032.
Zhang, J., Mei, L., Chen, N., Yuan, Y., Zeng, Q. Z., & Wang, Q. (2020). Study on β-lactoglobulin microgels adsorption onto a hydrophobic solid surface by QCM-D. Food Hydrocolloids, 98, 105320.
Destribats, M., Rouvet, M., Gehin-Delval, C., Schmitt, C., & Binks B. P. (2014). Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions. Soft Matter, 10(36): 6941–6954.
Sarkar, A., Murray, B., Holmes, M., Ettelaie, R., Abdalla, A., & Yang, X. (2016). In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: Influence of thermal treatment. Soft Matter, 12, 3558–3569.
Yang, Y., Jiao, Q., Wang, L., Zhang, Y., Jiang, B., Li, D., ... & Liu, C. (2022). Preparation and evaluation of a novel high internal phase Pickering emulsion based on whey protein isolate nanofibrils derived by hydrothermal method. Food Hydrocolloids123, 107180.
Muhoza, B., Zhang, Y., Xia, S., Cai, J., Zhang, X., & Su, J. (2018). Improved stability and controlled release of lutein-loaded micelles based on glycosylated casein via Maillard reaction. Journal of Functional Foods, 45, 1–9.
Spyropoulos, F., Kurukji, D., Taylor, P., & Norton, I. T. (2018). Fabrication and utilization of bifunctional protein/polysaccharide coprecipitates for the independent codelivery of two model actives from simple oil-in-water emulsions. Langmuir, 34(13), 3934–3948.
Chen, S., & Zhang, L. M. (2019). Casein nanogels as effective stabilizers for Pickering high internal phase emulsions. Colloids and Surfaces A, 579, 123662.
Bi, A. Q., Xu, X. B., Guo, Y., du, M., Yu, C. P., & Wu, C. (2020). Ultrasound pre-fractured casein and in-situ formation of high internal phase emulsions. Ultrasonics Sonochemistry, 64,104916.
Tan, H., Zhao, L., Tian, S., Wen, H., Gou, X., & Ngai, T. (2017). Gelatin particle-stabilized high-internal phase emulsions for use in oral delivery systems: Protection effect and in vitro digestion study. Journal of Agricultural and Food Chemistry, 65, 900–907.
Ding, M., Zhang, T., Zhang, H., Tao, N., Wang, X., & Zhong, J. (2019). Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle pickering emulsions in liquid forms. Food Hydrocolloids, 95, 326–335.
Ding, M., Zhang, T., Zhang, H., Tao, N., Wang, X., & Zhong, J. (2020). Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions. Food Chemistry, 309, 125642.
Feng, X., Dai, H., Ma, L., Yu, Y., Tang, M., Li, Y., et al. (2019). Food-grade gelatin nanoparticles: Preparation, characterization, and preliminary application for stabilizing pickering emulsions. Foods, 8(10), 479.
Zhu, X. F., Zhang, N., Lin, W. F., & Tang, C. H. (2017). Freeze-thaw stability of Pickering emulsions stabilized by soy and whey protein particles. Food Hydrocolloids, 69, 173–84.
Dai, L., Sun, C., Wei, Y., Zhan, X., Mao, L., & Gao, Y. (2018). Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type. Food Chemistry, 258, 321–330.
Yan, X., Ma, C., Cui, F., McClements, D. J., Liu, X., & Liu, F. (2020). Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends in Food Science and Technology103, 293-303.
Lorenzo, G., Sosa, M., & Califano, A. (2018). Alternative proteins and pseudocereals in the development of gluten-free pasta. Alternative and replacement foods. London: Academic Press; p. 433–58.
Lu, Y., Zhang, R., Jia, Y., Gao, Y., & Mao, L. (2023). Effects of nanoparticle types and internal phase content on the properties of W/O emulsions based on dual stabilization mechanism. Food Hydrocolloids, 139,108563.
Xiao, J., Wang, X., Gonzalez, A. J. P., & Huang, Q. (2016 ). Kafirin nanoparticles stabilized Pickering emulsions: Microstructure and rheological behavior. Food Hydrocolloids, 54, 30–39.
Burger, T. G., & Zhang, Y. (2019). Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science and Technology, 86, 25–33.
Li, M. F., He, Z. Y., Li, G. Y., Zeng, Q. Z., Su, D. X., Zhang, J. L., et al. (2019). The formation and characterization of antioxidant pickering emulsions: Effect of the interactions between gliadin and chitosan. Food Hydrocolloids, 90, 482–489.
Dai, L., Sun, C., Wei, Y., Mao, L., & Gao, Y. (2018). Characterization of Pickering emulsion gels stabilized by zein/gum Arabic complex colloidal nanoparticles. Food Hydrocolloids, 74, 239–248.
Zhu, Y., Chen, X., McClements, D. J., Zou, L., & Liu, W. (2018). pH-, ion- and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets. Food Hydrocolloids, 77, 870–878.
Rutkeviˇcius, M., Allred, S., Velev, O. D., & Velikov, K. P. (2018). Stabilization of oil continuous emulsions with colloidal particles from water-insoluble plant proteins. Food Hydrocolloids, 82, 89–95.
Zhu, F. (2019). Starch based Pickering emulsions: Fabrication, properties, and applications. Trends in Food Science and Technology, 85, 129–137.
Sun, Q. (2018). Starch nanoparticles. In M. Sjo¨o, ¨ & L. Nilsson (Eds.), Starch in food: Structure, function and applications (pp. 691–745). Woodhead Publishing. Elsevier Ltd.
Altuna, L., Herrera, M. L., & Foresti, M. L. (2018). Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocolloids, 80, 97–110.
Song, X., Zheng, F., Ma, F., Kang, H., & Ren, H. (2020). The physical and oxidative stabilities of Pickering emulsion stabilized by starch particle and small molecular surfactant. Food Chemistry, 303, 125391.
S´ anchez de la Concha, B. B., Agama-Acevedo, E., Aguirre-Cruz, A., Bello-P´erez, L. A., & Alvarez-Ramírez, ´ J. (2020). OSA esterification of amaranth and maize starch nanocrystals and their use in “pickering” emulsions. Starch Staerke, 72(7–8), 1900271.
Wang, P. P., Luo, Z. G., Chun-Chen, Xiong-Fu, & Tamer, T. M. (2020). Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of Pickering emulsions formulated by modified rice starch. Carbohydrate Polymers, 228, 115389.
Ahsan, H. M., Zhang, X., Li, Y., Li, B., & Liu, S. (2019). Surface modification of microcrystalline cellulose: Physicochemical characterization and applications in the Stabilization of Pickering emulsions. International Journal of Biological Macromolecules, 132, 1176–1184.
Gong, J., Li, J., Xu, J., Xiang, Z., & Mo, L. (2017). Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Advances, 7(53), 33486–33493.
Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B., & Capron, I. (2013). Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter, 9 (3), 952–959.
Dai, H., Wu, J., Zhang, H., Chen, Y., Ma, L., Huang, H., et al. (2020). Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends in Food Science and Technology, 102(2), 16–29.
Mitbumrung, W., Suphantharika, M., McClements, D. J., & Winuprasith, T. (2019). Encapsulation of vitamin D3 in pickering emulsion stabilized by nanofibrillated mangosteen cellulose: Effect of environmental stresses. Journal of Food Science, 84 (11), 3213–3221.
Li, X., Li, J., Gong, J., Kuang, Y., Mo, L., & Song, T. (2018). Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydrate Polymers, 183, 303–310.
Bai, L., Huan, S., Xiang, W., Liu, L., Yang, Y., Nugroho, R. W. N., et al. (2019). Selfassembled networks of short and long chitin nanoparticles for oil/water interfacial superstabilization. ACS Sustainable Chemistry and Engineering, 7(7), 6497–6511.
Mwangi, W. W., Ho, K. W., Tey, B. T., & Chan, E. S. (2016). Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food Hydrocolloids60, 543-550.
Uvanesh, K., Nayak, S. K., Sagiri, S. S., Banerjee, I., Ray, S. S., & Pal, K. (2018). Effect of Non-Ionic Hydrophilic and Hydrophobic Surfactants on the Properties on the Stearate Oleogels: A Comparative Study. In Nutraceuticals and Innovative Food Products for Healthy Living and Preventive Care (pp. 260-279): IGI Global.
Jin, B., Zhou, X., Guan, J., Yan, S., Xu, J., & Chen, J. (2019). Elucidation of stabilizing pickering emulsion with jackfruit filum pectin-soy protein nanoparticles obtained by photocatalysis. Journal of Dispersion Science and Technology, 40(6), 909-917.
Chen, X., Chen, Y., Huang, Y., Zou, L., Liu, C., McClements, D. J., & Liu, W. (2019). Hybrid Bionanoparticle-Stabilized Pickering Emulsions for Quercetin Delivery: Effect of Interfacial Composition on Release, Lipolysis, and Bioaccessibility. ACS Applied Nano Materials, 2(10), 6462-6472.
Liu, X., Ding, S., Wu, J., Liu, G., Wei, J., Yang, F., & Liu, X. (2021). Molecular structures of octenyl succinic anhydride modified starches in relation to their ability to stabilize high internal phase emulsions and oleogels. Food Hydrocolloids, 120, 106953.
Fasolin, L. H., Cerqueira, M., Pastrana, L., Vicente, A., & Cunha, R. (2018). Thermodynamic, rheological and structural properties of edible oils structured with LMOGs: Influence of gelator and oil phase. Food Structure, 16, 50-58.
Sun, G., Zhao, Q., Liu, S., Li, B., & Li, Y. (2019). Complex of raw chitin nanofibers and zein colloid particles as stabilizer for producing stable pickering emulsions. Food Hydrocolloids, 97, 105178.
Xu, W., Jin, W., Huang, K., Huang, L., Lou, Y., Li, J., Liu, X., & Li, B. (2018). Interfacial and emulsion stabilized behavior of lysozyme/xanthan gum nanoparticles. International Journal of Biological Macromolecules, 117, 280-286.
Yi, J., Gao, L., Zhong, G., & Fan, Y. (2020). Fabrication of high internal phase Pickering emulsions with calcium-crosslinked whey protein nanoparticles for β-carotene stabilization and delivery. Food and Function, 11(1), 768-778.
Zeng, T., Wu, Z. L., Zhu, J. Y., Yin, S. W., Tang, C. H., Wu, L. Y., & Yang, X. Q. (2017). Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Food Chemistry, 231, 122-130.
Zhou, F. Z., Yan, L., Yin, S. W., Tang, C. H., & Yang, X. Q. (2018). Development of Pickering Emulsions Stabilized by Gliadin/Proanthocyanidins Hybrid Particles (GPHPs) and the Fate of Lipid Oxidation and Digestion. Journal of Agricultural and Food Chemistry, 66(6), 1461-1471.
Wijaya, W., Sun, Q. Q., Van der Meeren, P., & Patel, A. R. (2017). Oleogels from high internal phase emulsion templates stabilized by sodium caseinate-alginate complexes. In São Paulo School of Advanced Sciences on Reverse Engineering of Processed Foods.
Zhang, Y., Zhou, F., Zhao, M., Lin, L., Ning, Z., & Sun, B. (2018). Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability. Food Hydrocolloids, 74, 62-71.
Fu, D., Deng, S., McClements, D. J., Zhou, L., Zou, L., Yi, J., Liu, C., & Liu, W. (2019). Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, 89, 80-89.
Wei, Z., & Huang, Q. (2020). Development of high internal phase Pickering emulsions stabilised by ovotransferrin–gum arabic particles as curcumin delivery vehicles. International Journal of Food Science and Technology, 55(5), 1891-1899.
Doost, A. S., Nasrabadi, M. N., Kassozi, V., Dewettinck, K., Stevens, C. V., & Van der Meeren, P. (2019). Pickering stabilization of thymol through green emulsification using soluble fraction of almond gum–Whey protein isolate nano-complexes. Food Hydrocolloids, 88, 218-227.
Su, J., Guo, Q., Chen, Y., Dong, W., Mao, L., Gao, Y., & Yuan, F. (2020). Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles. Food Hydrocolloids, 98, 105276.
Arroyo-Maya, I. J., & McClements, D. J. (2015). Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International69, 1-8.
Zhu, Q., Li, Y., Li, S., & Wang, W. (2020). Fabrication and characterization of acid soluble collagen stabilized Pickering emulsions. Food Hydrocolloids, 106, 105875.
Wang, D., Tao, S., Yin, S.-W., Sun, Y., & Li, Y. (2020). Facile preparation of zein nanoparticles with tunable surface hydrophobicity and excellent colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 591.
Hu, Y. Q., Yin, S. W., Zhu, J. H., Qi, J. R., Guo, J., Wu, L. Y., ... & Yang, X. Q. (2016). Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles. Food Hydrocolloids61, 300-310.
Song, S., Li, Y., Zhu, Q., Zhang, X., Wang, Y., Tao, L., & Yu, L. (2023). Structure and properties of Pickering emulsions stabilized solely with novel buckwheat protein colloidal particles. International Journal of Biological Macromolecules226, 61-71.
Hei, X., Liu, Z., Li, S., Wu, C., Jiao, B., Hu, H., ... & Shi, A. (2024). Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream. International Journal of Biological Macromolecules257, 128183.
Ning, F., Ge, Z., Qiu, L., Wang, X., Luo, L., Xiong, H., et al. (2020). Double-induced seenriched peanut protein nanoparticles preparation, characterization and stabilized food-grade Pickering emulsions. Food Hydrocolloids, 99, 105308.
Hei, X., Li, S., Liu, Z., Wu, C., Ma, X., Jiao, B., ... & Shi, A. (2024). Characteristics of Pickering emulsions stabilized by microgel particles of five different plant proteins and their application. Food Chemistry449, 139187.
Li, S., Zhang, B., Tan, C. P., Li, C., Fu, X., & Huang, Q. (2019). Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels: Preparation, microstructure and gelling mechanism. Food Hydrocolloids, 91, 40–47.
Qian, X., Lu, Y., Xie, W., & Wu, D. (2020). Viscoelasticity of olive oil/water Pickering emulsions stabilized with starch nanocrystals. Carbohydrate Polymers, 230, 115575.
Li, Q., Wang, Y., Wu, Y., He, K., Li, Y., Luo, X., et al. (2019). Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocolloids, 88, 180–189.
Costa, A. L. R., Gomes, A., & Cunha, R. L. (2018). One-step ultrasound producing O/W emulsions stabilized by chitosan particles. Food Research International, 107, 717–725.
Liu, F., Zheng, J., Huang, C. H., Tang, C. H., & Ou, S. Y. (2018). Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocolloids, 82, 96–105.
Li, Z., Zheng, S., Zhao, C., Liu, M., Zhang, Z., Xu, W., et al. (2020). Stability, microstructural and rheological properties of Pickering emulsion stabilized by xanthan gum/lysozyme nanoparticles coupled with xanthan gum. International Journal of Biological Macromolecules, 165, 2387–2394.
Zhan, Y., Qin, S., Zeng, Y., Xu, Q., McClements, D. J., & Hu, K. (2024). Pickering emulsions stabilized by egg white protein-alginate nanoparticles: Freeze-thaw stability after heating. Food Hydrocolloids150, 109675.
Li, L., Wang, W., Ji, S., & Xia, Q. (2024). Soy protein isolate-xanthan gum complexes to stabilize Pickering emulsions for quercetin delivery. Food Chemistry, 140794.
Zhu, X., Chen, J., Hu, Y., Zhang, N., Fu, Y., & Chen, X. (2021). Tuning complexation of carboxymethyl cellulose/cationic chitosan to stabilize Pickering emulsion for curcumin encapsulation. Food Hydrocolloids, 110, 106135.
Cai, X., Wang, Y., Du, X., Xing, X., & Zhu, G. (2020). Stability of pH-responsive Pickering emulsion stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocolloids, 109, 106093.
Tavasoli, S., Maghsoudlou, Y., Tabarestani, H. S., & Jafari, S. M. (2023). Changes in emulsifying properties of caseinate–Soy soluble polysaccharides conjugates by ultrasonication. Ultrasonics Sonochemistry101, 106703.
Carocho, M., Morales, P., & Ferreira, I. C. (2018). Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends in Food Science and Technology, 71, 107-120.
Tavernier, I., Wijaya, W., Van der Meeren, P., Dewettinck, K., & Patel, A. R. (2016). Food-grade particles for emulsion stabilization. Trends in Food Science and Technology, 50, 159-174.
Boostani, S., Riazi, M., Marefati, A., Rayner, M., & Hosseini, S. M. H. (2022). Development and characterization of medium and high internal phase novel multiple Pickering emulsions stabilized by hordein nanoparticles. Food Chemistry, 372, 131354.
Alehosseini, E., Jafari, S. M., & Tabarestani, H. S. (2021). Production of d-limonene-loaded Pickering emulsions stabilized by chitosan nanoparticles. Food Chemistry, 354, 129591.
Wang, X., Sun, J., Zhao, S., Zhang, F., Meng, X., & Liu, B. (2023). Highly stable nanostructured lipid carriers containing candelilla wax for d-limonene encapsulation: Preparation, characterization and antifungal activity. Food Hydrocolloids, 145, 109101.
Low, L. E., Tan, L. T. H., Goh, B. H., Tey, B. T., Ong, B. H., & Tang, S. Y. (2019). Magnetic cellulose nanocrystal stabilized Pickering emulsions for enhanced bioactive release and human colon cancer therapy. International Journal of Biological Macromolecules, 127, 76-84.
Souza, A. G., Ferreira, R. R., Paula, L. C., Mitra, S. K., & Rosa, D. S. (2021). Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packaging and Shelf Life, 27, 100615.
Tavassoli, M., Khezerlou, A., Bangar, S. P., Bakhshizadeh, M., Haghi, P. B., Moghaddam, T. N., & Ehsani, A. (2023). Functionality developments of Pickering emulsion in food packaging: Principles, applications, and future perspectives. Trends in Food Science and Technology, 132, 171-187.
Klojdová, I., & Stathopoulos, C. (2022). The potential application of Pickering multiple emulsions in food. Foods, 11(11), 1558.
Valencia, L., Nomena, E. M., Mathew, A. P., & Velikov, K. P. (2019). Biobased cellulose nanofibril–oil composite films for active edible barriers. ACS Applied Materials & Interfaces, 11(17), 16040-16047.
Nkede, F. N., Wardana, A. A., Phuong, N. T. H., Takahashi, M., Koga, A., Wardak, M. H., ... & Tanaka, F. (2023). Preparation and characterization of chitosan/lemongrass oil/cellulose nanofiber Pickering emulsions active packaging and its application on tomato preservation. Journal of Polymers and the Environment, 31(11), 4930-4945.
Briggs, M. A., Petersen, K. S., & Kris-Etherton, P. M. (2017, June). Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. In Healthcare (Vol. 5, No. 2, p. 29). MDPI.
Li, W., Jiao, B., Li, S., Faisal, S., Shi, A., Fu, W., ... & Wang, Q. (2022). Recent advances on Pickering emulsions stabilized by diverse edible particles: Stability mechanism and applications. Frontiers in Nutrition, 9, 864943.
Wang, Y., Wang, W., Jia, H., Gao, G., Wang, X., Zhang, X., & Wang, Y. (2018). Using cellulose nanofibers and its palm oil pickering emulsion as fat substitutes in emulsified sausage. Journal of Food Science, 83(6), 1740-1747.
Feng, X., Sun, Y., Yang, Y., Zhou, X., Cen, K., Yu, C., ... & Tang, X. (2020). Zein nanoparticle stabilized Pickering emulsion enriched with cinnamon oil and its effects on pound cakes. Lwt, 122, 109025.
Okuro, P. K., Gomes, A., Costa, A. L. R., Adame, M. A., & Cunha, R. L. (2019). Formation and stability of W/O-high internal phase emulsions (HIPEs) and derived O/W emulsions stabilized by PGPR and lecithin. Food Research International, 122, 252-262.
Liu, G., Wang, Q., Hu, Z., Cai, J., & Qin, X. (2019). Maillard-reacted whey protein isolates and epigallocatechin gallate complex enhance the thermal stability of the pickering emulsion delivery of curcumin. Journal of Agricultural and Food Chemistry, 67(18), 5212-5220.
Chen, L., Ao, F., Ge, X., & Shen, W. (2020). Food-grade Pickering emulsions: Preparation, stabilization and applications. Molecules, 25(14), 3202.