پیش‌بینی الگوی توزیع پارامترهای موثر بر ضریب انتقال حرارت نانوسیال در مبدل حرارتی پوسته و لوله با استفاده از دینامیک سیالات محاسباتی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استاد گروه علوم و مهندسی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استادیار گروه علوم وصنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 استادیار گروه علوم و مهندسی صنایع غذایی، دانشکده علوم کشاورزی، دانشگاه گیلان

چکیده

چکیده
سابقه و هدف: در بین انواع مبدل‌ها، مبدل‌های حرارتی پوسته و لوله رایج‌ترین تجهیزات تبادل حرارتی هستند. راندمان انرژی یک مبدل حرارتی را می توان با بهبود ویژگی‌های انتقال حرارت افزایش داد. نانوسیالات سوسپانسیون‌های کلوئیدی شده نانوذرات در یک سیال پایه هستند. نانوذرات مورد استفاده در نانوسیال‌ها معمولاً از فلزات، اکسیدها، کاربیدها یا نانولوله‌های کربنی ساخته می‌شوند. سرعت انتقال حرارت تحت تأثیر خواص ترموفیزیکی نانوسیال است که با افزایش حجم نانوذرات در سیال پایه افزایش می‌یابد. خواص نانوسیال تحت تأثیر غلظت نانوذرات، سطح خلوص و ساختار متغییر است. هدف اصلی این مقاله ارائه یک بررسی کلی از استفاده از نانوسیال در مبدل های حرارتی پوسته و لوله جهت افزایش ضرایب انتقال حرارت و شبیه‌سازی پارامترهای موثر در انتقال جریان و حرارت می‌باشد تا بتوان توزیع دما، سرعت و افت فشار را در نقاط مختلف مبدل حرارتی پیش‌بینی کرد.
مواد و روش‌ها: در این مطالعه، نرم افزار شبیه‌سازی چند فیزیکی کامسول ورژن 6 برای ساخت یک مدل محاسباتی از مبدل حرارتی پوسته و لوله، به منظور شبیه‌سازی تغییرات دما، سرعت و افت فشار در مبدل حرارتی استفاده شد. نانوسیال داغ (353.15 درجه کلوین) به عنوان سیال گرم در لوله افقی و آب (298.15 درجه کلوین) نیز از سمت پوسته وارد شده است. نقش مربوط به پارامترهای هندسه مورد استفاده بر میزان انتقال گرما بررسی و ارائه شده است. مشخصات دما و میزان انتقال حرارت کلی از دیواره لوله محاسبه و برای روش‌های تئوری، تجربی و عددی با استفاده از مدل انتقال حرارت K-ɛ طراحی شده است.
یافته‌‌ها: با انجام بررسی دینامیک سیالات محاسباتی محاسبه مقادیر مطلوب هر یک از پارامترهای مورد بررسی، انطباق خوبی بین بررسی دینامیک سیالات محاسباتی و نتایج تجربی حاصل شد. نتایج حاصله از کانتورهای دما، سرعت و افت فشار نشان می‌دهد که افزودن نانوذرات به سیال می‌تواند به طور موثری نسبت رسانایی حرارتی سیال را افزایش دهد و دمای نانوذرات افزوده شده با نسبت هدایت حرارتی رابطه مستقیم دارد. تغییرات سرعت در پوسته بسیار ناچیز است و در بیشتر مناطق پوسته سرعت طبق محاسبات عددی و با توجه به نوار رنگی راهنما حدود 0.05 متر بر ثانیه می‌باشد، ولی در نقاط برخورد جریان با بافل‌ها و ورودی و خروجی مقادیر متفاوت و بین 0.15 تا 0.2 متر بر ثانیه می‌باشد. از نتایج عددی، فهمیده می‌شود که مقادیر سرعت در مجاورت دیواره‌ها بسیار کم است، که به دلیل وجود گرادیان قوی اصطکاک است. با بررسی کانتورهای مربوط به دما می‌توان یافت که انتقال حرارت در سراسر طول مبدل یکنواخت نیست و کاهش درجه حرارت در جهت جریان قابل مشاهده است.
نتنیجه گیری کلی: استفاده از نانوذره آلومینا در سیال پایه به مقدار 4 درصد باعث افزایش 0.9 درجه کلوین دمای میانگین خروجی در یه سیکل گذر از سیستم شد که با تکرار این سیکل افزایش دما بیشتر و بیشتر می‌شود. با توجه به کانتور افت فشار، افت فشار نانوسیالات به‌‌مراتب بیشتر از سیال پایه بوده و با افزایش غلظت نانو سیال افت فشار نیز افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting the distribution pattern of parameters affecting the heat transfer coefficient of nanofluid in shell and tube heat exchangers using computational fluid dynamics

نویسندگان [English]

  • Abdolsatar Evazsoofian 1
  • Seid Mahdi Jafari 2
  • Mahdi Kashaninejad 2
  • Alireza Sadeghi 3
  • Narjes Malekjani 4
1 Faculty of Food Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
2 Faculty of Food Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran,
3 Faculty of Food Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran,
4 Faculty of Agricultural Sciences, University of Guilan, Guilan, Iran
چکیده [English]

Abstract
Background and objectives: Among the types of heat exchangers, shell and tube heat exchangers are the most common heat exchange equipment. The energy efficiency of a heat exchanger can be increased by improving the heat transfer properties. Nanofluids are a Colloidal suspension of nanoparticles are in a base fluid.The nanoparticles used in nanofluids are usually made of metals, oxides, carbides, or carbon nanotubes. The heat transfer rate is affected by the thermophysical properties of the nanofluid, which increases with the increasing volume of nanoparticles in the base fluid. Nanofluid properties are affected by nanoparticle concentration, purity level, and variable structure. The main purpose of this paper is to provide an overview of the use of nanofluids in shell and tube heat exchangers to increase heat transfer coefficients and simulate the parameters affecting the flow and heat transfer to predict temperature distribution, velocity, and pressure drop in different parts of the heat exchanger.
Material and methods: In this study, Camsol multiphysicas simulation software version 6 was used to build a computational model of shell and tube heat exchanger to simulate temperature, velocity, and pressure drop changes in the heat exchanger. Hot nanofluid (353.15 ° K) enters the tube and water (298.15 ° K) enters the shell. The role of geometry parameters used on heat transfer rate has been investigated and presented. The temperature and total heat transfer characteristics of the pipe wall are calculated and designed for theoretical, experimental, and numerical methods using the K- ɛ heat transfer model.
Results: By performing a computational fluid dynamics study, and calculating the desired values of each of the studied parameters, a good agreement was obtained between the computational fluid dynamics study and experimental results. The results of temperature, velocity, and pressure drop counters show that the addition of nanoparticles to the fluid can effectively increase the thermal conductivity of the fluid the temperature of the added nanoparticles are directly related to the thermal conductivity ratio. The velocity changes in the shell are very small and in most areas of the shell, the speed according to numerical calculations and according to the colored guide bar is about 0.05 meters per second, but at the points of collision of the current with the baffles and inlet and outlet values are different and between 0.15 to 0.2 meters. Is seconds. From the numerical results, it can be seen that the velocity values in the vicinity of the walls are very low, which is due to the strong friction gradient. Examining the temperature-related contours, it can be seen that the heat transfer is not uniform throughout the length of the exchanger and the decrease in temperature in the direction of flow is visible.
Conclusion: The use of alumina nanoparticles in the base fluid by 4% increased the average output temperature by 0.9 degrees in a passing cycle of the system, which increases more and more with the repetition of this cycle. According to the pressure drop contour, the pressure drop of nanofluids is much higher than the base fluid and the pressure drop increases with increasing the concentration of nanofluid.

کلیدواژه‌ها [English]

  • Keywords: heat exchanger
  • simulation
  • heat transfer
  • nanofluid
  1. Rehman, U. U. 2012. Heat transfer optimization of shell-and-tube heat exchanger through CFD studies (Master's thesis).
  2. Jafari, S. M., Saramnejad, F., and Dehnad, D. 2018. Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. Journal of food process engineering41: e12658.
  3. Kim, S., Song, H., Yu, K., Tserengombo, B., Choi, S. H., Chung, H., ... and Jeong, H. 2018. Comparison of CFD simulations to experiment for heat transfer characteristics with aqueous Al2O3 nanofluid in heat exchanger tube. International Communications in Heat and Mass Transfer95: 123-131.
  4. Farajollahi, B., Etemad, S. G., and Hojjat, M. 2010. Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer. 53: (1-3).12-17.
  5. Fuskele, V., and Sarviya, R. M. 2017. Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Materials Today: Proceedings4: 2.4049-4060.
  6. Gupta, S. K., Verma, H., and Yadav, N. 2022. A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy. Materials Today: Proceedings54: 579-589.
  7. Bahiraei, M. 2014. A comprehensive review on different numerical approaches for simulation in nanofluids: traditional and novel techniques. Journal of dispersion science and technology35: 7. 984-996.
  8. Eastman, J.A., Choi, S., Li, S., Yu, W., and Thompson, L. 2001. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters. 78: 718-720.
  9. Murshed, S., Leong, K., and Yang, C. 2008. Investigations of thermal conductivity and viscosity of nanofluids. International journal of thermal sciences. 47: 5.560-568.
  10. Jafari, S. M., Saremnejad, F., Dehnad, D., and Rashidi, A.M. 2017. Evaluation of performance and thermophysical properties of alumina nanofluid as a new heating medium for processing of food products. Journal of Food Process Engineering. 40: 5.e12544.
  11. Kia, S.M., Nobakhti, M.H., and Khayat, M. 2020. Experimental investigation on heat transfer and pressure drop of Al2O3-base oil nanofluid in a helically coiled tube and effect of turbulator on the thermal performance of shell and tube heat exchanger. Journal of Energy Conversion. 7: 61-80 (in persian)
  12. Teng, T.-P., Hung, Y.-H., Teng, T.-C., Mo, H.-E., and Hsu, H.-G. 2010. The effect of alumina/water nanofluid particle size on thermal conductivity. Applied Thermal Engineering. 30: (14-15). 2213-2218.
  13. Nguyen, C., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S., and Mintsa, H. A. 2008. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? International journal of thermal sciences. 47: 103-111.
  14. He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., and Lu, H. 2007. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer. 50: (11-12).2272-2281.
  15. Jafari, S. M., Saremnejad, F., and Dehnad, D. 2017. Nano-fluid thermal processing of watermelon juice in a shell and tube heat exchanger and evaluating its qualitative properties. Innovative Food Science & Emerging Technologies. 42: 173-179.
  16. Youcef, A., and Saim, R. 2019. Computational analysis of turbulent flow and thermal transfer in a shell and tube heat exchanger.  J. Heat Technol37: 4.1043-1051.
  17. Ding, Y., Alias, H., Wen, D., and Williams, R. A. 2006. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 49: (1-2).240-250.
  18. Somasekhar, K., Rao, K. M., Sankararao, V., Mohammed, R., Veerendra, M., and Venkateswararao, T. 2018. A CFD investigation of heat transfer enhancement of shell and tube heat exchanger using Al2O3-water nanofluid. Materials Today: Proceedings5: 1.1057-1062.
  19. Ozden, E., and Tari, I. 2010. Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Conversion and Management. 51: 5.1004-1014.
  20. Wen, D., and Ding, Y. 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer. 47: 5181-5188.
  21. Pryor, R.W. 2009. Multiphysics modeling using COMSOL®: a first principles approach. Jones & Bartlett Publishers.
  22. Paul, G., Philip, J., Raj, B., Das, P. K., and Manna, I. 2011. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. International Journal of Heat and Mass Transfer. 54: (15-16).3783-3788.
  23. Cordioli, M., Rinaldi, M., Copelli, G., Casoli, P., and Barbanti, D. 2015. Computational fluid dynamics (CFD) modelling and experimental validation of thermal processing of canned fruit salad in glass jar. Journal of Food Engineering. 150: 62-69.
  24. Khalifa, A. J. N., and Banwan, M. A. 2015. Effect of volume fraction of γ‐Al2O3 nanofluid on heat transfer enhancement in a concentric tube heat exchanger. Heat Transfer Engineering36: 16.1387-1396.
  25. Kumar, N., Sonawane, S.S., and Sonawane, S.H. 2018. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. International Communications in Heat and Mass Transfer. 90: 1-10.
  26. Meikandan, M., Sundarraj, M., Yogaraj, D., and Malarmohan, K. 2020. Experimental and numerical investigation on bare tube cross flow heat exchanger-using COMSOL. International Journal of Ambient Energy41: 500-510.
  27. Jafari, S. M., Jabari, S. S., Dehnad, D., and Shahidi, S. A. 2017. Heat transfer enhancement in thermal processing of tomato juice by application of nanofluids. Food and Bioprocess Technology10: 2.307-316.
  28. Cruz, P.A.D., Yamat, E.J.E., Nuqui, J.P.E., and Soriano, A.N. 2022. Computational Fluid Dynamics (CFD) Analysis of the Heat Transfer and Fluid Flow of Copper (II) Oxide-Water Nanofluid in a Shell and Tube Heat Exchanger. Digital Chemical Engineering. 18:100014.
  29. Izadi, M., Behzadmehr, A., and Jalali-Vahida, D. 2009. Numerical study of developing laminar forced convection of a nanofluid in an annulus. International journal of thermal sciences. 48: 11. 2119-2129.
  30. Bianco, V., Chiacchio, F., Manca, O., and Nardini, S. 2009. Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering, 29: 17-18.3632-3642.
  31. Skočilas, J., and Palaziuk, I. 2015. CFD simulation of the heat transfer process in a chevron plate heat exchanger using the SST turbulence model.